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Abstract – It is shown that, in tokamak plasmas, finite drift/banana-orbit width (FOW) effects
play crucial roles in the nonlinear evolution of Kinetic/ Geodesic Acoustic Modes (KGAM/GAM). In
particular, it is found that, in contrast to the negligible second-harmonic generation, KGAM/GAM
can generate appreciable zero-frequency zonal flow (ZFZF) due to the FOW effects. On the other
hand, ZFZF is found to have negligible effects on the dynamics of GAM/KGAM. This route of
generating ZFZF has important implications to the nonlinear dynamics of zonal flows and, conse-
quently, DW turbulences.

Zonal flows (ZF) or more generally zonal structures (ZS) are toroidally and poloidally
symmetric radial corrugations. ZF can be excited by drift wave turbulences [1] including
drift Alfvén waves, and in turn, suppress DW turbulence by scattering DWs into stable
short radial wavelength domain [2–4]. Thus, ZF are generally believed to play important
roles in the nonlinear dynamics of DW turbulences [5].

There are two types of zonal flows, i.e., zero frequency zonal flow (ZFZF) [6, 7] and its
finite frequency counterpart, Geodesic Acoustic Mode (GAM) [8]. It is believed that, ZFZF
is more effective in suppressing DW than GAM via turbulence shearing [9]. Understanding
the excitation mechanisms for both GAM and ZFZF is, thus, of fundamental importance
to the understanding of turbulence transports. While gyrokinetic theory has shown that
the parametric excitation rates of GAM and ZFZF are comparable with each other [10],
the DW parametric processes have parameter-sensitive dependencies on the corresponding
threshold conditions, which affect the relative importance of GAM and ZFZF in regulating
DW turbulence. There is also the possibility of nonlinear interactions between GAM and
ZFZF.

It has been shown via numerical simulations in Ref. 11 (Figs. 1c and 5a therein) that
the nonlinear self interaction of finite amplitude GAM has negligible effect in generating
second harmonic GAM [12] due to the cancellation between the usual perpendicular nonlin-
earity and the parallel nonlinearity, which is, typically, much smaller than the perpendicular
nonlinearity and is generally negligible [13]. It is shown in the same work that, contrary
to the previous belief [14], ZFZF can also be generated by finite-amplitude GAM and this
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generation is little affected by the inclusion of parallel nonlinearity [11]. This observation
indicates that ZFZF can be nonlinearly generated via GAM; even though it is below the
threshold value for its own spontaneous excitation. This route of generating ZFZF obviously
has important implications to the nonlinear dynamics of zonal flows and, consequently, DW
turbulences since ZFZF may be more efficient than GAM in suppressing micro turbulence
[15], when shearing [9] prevails over the effect of scattering [3, 4, 10,16].

This work is, thus, motivated to investigate analytically the mechanism for ZFZF gener-
ation by GAM, and naturally, the feedback modulation of ZFZF on GAM. We found that,
ZFZF can indeed be driven by finite amplitude GAM via the crucial role played by finite
orbit width (FOW) effects. On the other hand, ZFZF is found to have negligible effects on
the dynamics of GAM/KGAM.

The nonlinear interactions between GAM and ZFZF are investigated within the theoret-
ical framework of modulational instability [17,18]. In this work, we assume that both GAM
and ZFZF are electrostatic with a scalar potential δϕ = δϕG + δϕZ , where

δϕG = ΦG(r, σt) exp(−iω0t) + c.c.,

and

δϕZ = ΦZ(r, σt).

Here, σ is a smallness parameter indicating slow temporal variations; i.e., |d lnΦG/dt| ∼
|d lnΦZ/dt| ≪ ω0 = ωG. The nonlinear equations describing the interations between GAM
and ZFZF are derived from the charge quasi-neutrality condition
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2
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(
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)
δϕk = ⟨eJkδHi⟩k − ⟨eδHe⟩k; (1)

with δHs being the nonadiabatic part of the perturbed particle distribution function of
specie s, which can be solved from the nonlinear gyrokinetic equation [13](

∂t + v∥∂l + vdr∂r
)
k
δHk = −qs

m
Jk∂tδϕ∂EF0 −

∑
k

δuk′ · ∇δHk′′ . (2)

A large aspect-ratio axisymmetric tokamak with equilibrium magnetic field given by B0 =
B0(eξ/(1 + ϵ cos θ) + (ϵ/q)eθ) is considered in this work; where, ξ and θ are, respectively,
toroidal and poloidal angles of the torus, ϵ = r/R0 ≪ 1 is the inverse aspect ratio, r and
R0 are, respectively, the minor and major radii, and (r, θ, ξ) are straight-field-line toroidal
flux coordinates. Meanwhile, vdr = (v2⊥/2+ v2∥)/(ΩR0) sin θ ≡ v̂dr sin θ is the magnetic drift

velocity associated with geodesic curvature, δu = b × ∇J0δϕ/Ω is the electric field drift
velocity, Ω = qsB/mc is the gyrofrequency, q is the tokamak safety factor, Jk = J0(k⊥ρL) is
the Bessel function accounting for finite Larmor radius (FLR) effects, k⊥ is the perpendicular
wave vector, ρL = mcv⊥/qsB is the Larmor radius, and E = (v2∥ + v2⊥)/2.

Note that, in equation (2), parallel nonlinearity is not included, since it is usually much
smaller than the perpendicular nonlinearity and corresponds to physics on a time scale longer
than that of interest here. In fact, it can be shown a posteori that the parallel nonlinearity
is indeed ignorable in the nonlinear generation of ZFZF by GAM; consistent with GTC
simulations [11].

Linear Theory of ZFZF. – Since our work utilizes linear properties, such as the
m ̸= 0 components of the perturbed distribution function and potential field, we first briefly

review the linear theory of ZFZF. Defining δHL
Z = e−ρ̃d∂rδHL

dZ , where the L superscript
denotes the linear response, the linear gyrokinetic equation describing nonadiabatic particle
response to ZFZF can be written as(

∂t + v∥∂l
)
δHL

dZ =
q

T
F0JZe

ρ̃d∂r∂tδϕZ . (3)
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Here, ρ̃d is the drift orbit width, defined as ∂lρ̃d = vdr/v∥, and e−ρ̃d∂r is the operator for
drift orbit center transformation. Separating the m ̸= 0 and m = 0 components of δHL

dZ ,

δHL
dZ = ˜δHL

dZ + δHL
dZ , where (· · ·) denotes m = 0 or surface-averaged component and (̃· · ·)

denotes m ̸= 0, one then has, from equation (3),

∂tδHL
dZ =

q

T
F0JZeρ̃d∂r∂tδϕZ ,

and
(
∂t + v∥∂l

) ˜δHL
dZ =

q

T
F0JZ

(
eρ̃d∂r∂tδϕZ − e−ρ̃d∂r∂tδϕZ

)
.

For ZFZF, with | ˜δHL
dZ/δH

L
dZ | ≃ |∂t/v∥∂l| ≪ 1, one has δHL

dZ ≃ δHL
dZ , and hence

δHL
dZ ≃ δHL

dZ =
q

T
F0JZeρ̃d∂rδϕZ .

Thus, the nonadiabatic part of the perturbed guiding center distribution function is

δHL
Z = e−ρ̃d∂rδHL

dZ =
q

T
F0JZe

−ρ̃d∂reρ̃d∂rδϕZ , (4)

with the m ̸= 0 component |δ̃HL
Z/δH

L
Z | ∼ |krρd| ≪ 1. Thus, the m ̸= 0 component of

electron response to ZFZF is negligible due to small electron drift orbits. We note that,

from linear theory of GAM, one has |δ̃HL
G/δH

L
G| ∼ |krρL| ≪ |δ̃HL

Z/δH
L
Z | due to q ≫ 1

in the tokamak edge region of interest here. This property is used in determining the
ordering of nonlinear response to GAM. The dispersion relation of ZFZF, can then be
derived from surface-averaged quasi-neutrality condition [7], while the m ̸= 0 component of
quasi-neutrality condition yields

δ̃ϕZ = −
(
1 +

Ti

Te

)⟨
F0J

2
Z ρ̃d∂r

⟩
δϕZ ∝ cos θ. (5)

We note again that |δ̃ϕZ/δϕZ | ∝ |krρ̃d| is also larger than the counterpart of GAM,

δ̃ϕG/δϕG| ∝ |krρL| [19].

ZFZF generation by GAM. – We first derive the nonlinear equation describing

ZFZF generation by GAM. Again, defining δHNL
Z = e−ρ̃d∂rδHNL

dZ , the nonlinear gyrokinetic
equation for ZFZF can be written as(

∂t + v∥∂l
)
δHNL

dZ = −eρ̃d∂r

∑
k

δu · ∇δH.

For ZFZF, with ωZ ∼ ωNL ≪ |v∥∂l|, one has δHNL
dZ = δHNL

dZ + ˜δHNL
dZ ≃ δHNL

dZ . Therefore,

∂tδHNL
dZ = −eρ̃d∂r

∑
k

δu · ∇δH

= − q

T
F0JGeρ̃d∂r

∑
k

δuG · ∇
(
δϕG +

ωd

ωG
δϕG − i

v∥∂l

ωG
δϕG

)
. (6)

In deriving equation (6), we have noted [19]

δHL
G ≃ e

Ti
F0JG

(
δϕG +

ωd

/ωG
δϕG − iv∥

∂

∂l
δ̃ϕG/ωG + · · ·

)
.

The first term of equation (6) vanishes since δuG = cb×∇δϕG/B. Noting that δuG · ∇ =
δuG,θ(1/r)∂θ + δuG,r∂r, with δuG,θ = −(c/B)δEG,r and δuG,r = (c/B)δEG,θ ∝ cos θ, we
then have

∂tδHNL
dZ = − e

Ti
F0JG(1 + ρ̃d∂r)

(
− c

B0
δEG,r

1

r
∂θ −

c

B0

1

r
∂θ δ̃ϕG∂r

)(
ωd

ωG
δϕG −

iv∥∂l

ωG
δ̃ϕG

)
(7)
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In obtaining equation (7), we have assumed that |ρ̃d∂r| ≪ 1. Noting that ρ̃d ∝ cos θ,

ωd ∝ sin θ, δ̃ϕG ∝ sin θ [19], equation (7) can be greatly simplified to

∂tδHNL
dZ = − e

Ti
F0JGρ̃d∂r

(
− c

B0
δE∗

G,r

1

r
∂θ

)(
ωd

ωG
δϕG

)
× (1 +O(q−2)) + c.c.

= i
e

Ti
F0JG

c

B0
v̂drρ̃d cos θ

(
1

ωG
− 1

ω∗
G

)
∂

∂r

(
|δEG,r|2

r

)
×
(
1 +O(q−2)

)
. (8)

Noting ωG = ω0 + i∂t, we then have, after some algebra,

δHNL
dZ = − e

Ti
F0JG

1

ω2
0

c

B0
v̂drρ̃dr cos θ

∂

∂r

(
|δEG,r|2

r

)
. (9)

The main contribution comes from the second term of equation (6). The first term vanishes
due to anti-symmetry in θ. The third term, meanwhile, is of order O(q−2) smaller than the
second term. It is worthy mentioning that, from equation (8), the dominant contribution
comes from coupling due to finite drift-orbit width effect; that is, a neoclassical effect. Sub-
stituting the nonlinear particle response, equation (9), into the quasi-neutrality condition,
we obtain the following nonlinear equation describing nonlinear excitation of ZFZF by a
finite amplitude GAM

χZδϕZ = − c

B0

1

ω2
G

∂

∂r

[⟨
v̂drcos θρ̃dF0

⟩ |δEG,r|2

r

]
; (10)

where, χZ is the well-known neoclassical polarization of ZFZF [7]

χZδϕZ ≡
(
1−

⟨
F0

ni
J2
Z

∣∣∣eρ̃d∂r

∣∣∣2⟩)
δϕZ .

Null modulation of GAM by ZFZF. – For GAM, with |ωG| ≫ |vd∂r|, |v∥∂l|, the
particle responses can be solved by asymptotic expansion with the smallness parameter
q−1 ∼ v∥/(qR0ωG). Separating δHNL

G = δHNL
G,0 + δHNL

G,1 , and noting |δHNL
G,1/δH

NL
G,0 | ≃

O(q−1) ≪ 1, the nonlinear gyrokinetic equation for GAM can be expanded order by order;

∂tδH
NL
G,0 = −∇ · (δuδH)G , (11)

and

∂tδH
NL
G,1 = −v∥∂lδH

NL
G,0 − vdr∂rδH

NL
G,0 . (12)

To the lowest order, the surface-averaged equation (11) yields

∂

∂t

⟨
δHNL

G,0

⟩
= − c

B0

∂

∂r

(
δ̃ϕZ∂θ⟨δHG⟩+ δ̃ϕG∂θ⟨δHZ⟩

)
. (13)

For n = 0 zonal modes, with δ̃He = 0, them ̸= 0 component of quasi-neutrality condition
yields: ⟨

J0δ̃Hi

⟩
k
=

e

Ti

(
1 +

Ti

Te

)
δ̃ϕ ⇒

⟨
δ̃Hi

⟩
≃ αδ̃ϕ, (14)

with α = (e/Ti + e/Te). Substituting equation (14) into equation (13), we then have

∂

∂t

⟨
δHNL

G,0

⟩
= 0; (15)
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i.e., at the leading order, there is no modulation of GAM by ZFZF.
To the next order, taking time derivative of equation (12), and then taking surface

averaging, we get

∂2
t δH

NL
G,1 = −vdr∂r∂tδHNL

G,0

=
∂

∂r

(
ṽdrδuθ

∂θ
r
δ̃H + ṽdr δ̃ur

∂

∂r
δH

)
. (16)

The first term of equation (16), is of order krρi(R0/r)(δ̃H/δH) relative to the parallel

nonlinearity, while the second term, is of order krρi(R0/r)(δ̃ϕ/δϕ). Note that, we have

|δ̃ϕZ/δϕZ |, |δ̃HZ/δHZ | ∼ krρd ≫ |δ̃ϕG/δϕG|, |δ̃GG/δGG| ∼ krρi. Thus, both terms in
equation (16) are of order krρikrρd(R0/r) compared with parallel nonlinearity. For the
ordering 1 ≫ krρd ≫ krρi ≫ r/R0 ≫ krρdkrρi, both terms are smaller than the parallel
nonlinearity. As a result, there is no modulation of GAM by ZFZF up to the order of the
parallel nonlinearity.

Conclusion. – In conclusion, the nonlinear interactions between GAM and ZFZF is
studied using gyrokinetic theory. It is found that, contrary to earlier belief [14], ZFZF can be
generated by a finite-amplitude GAM, when the crucial FOW effect due to particle magnetic
field gradient and curvature drifts are included. One implication is that ZFZF can be forced
driven by a finite-amplitude GAM (e.g. driven by energetic particles [20, 21]), even if it is
below the threshold condition for its own spontaneous excitation by drift wave turbulence
[10]. On the other hand, we show that, ZFZF has a negligible effect on the dynamics of
GAM; and that parallel nonlinearity must be taken into account if one wants to address the
long time scale feedback effect on GAM of nonlinear generated ZFZF.

When extended to burning plasmas of fusion interest, the results of the present work
suggest that DW turbulence, zonal flows and energetic particles will have complex interplays
on long times, in the order of the transport time scale [22]. Therefore, the interesting
implications of current findings to the nonlinear dynamic evolution of the coupled zonal
flow and DW turbulence remain to be further studied.
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