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Abstract 

High confinement fusion plasmas feature strong gradient pedestal, where extra polarization density due to steep 

gradient needs to be considered in gyrokinetic simulation and a numerical scheme based on Padé approximation 

is invented to include this higher order polarization. The physics consequences of this polarization correction 

are investigated via gyrokinetic simulation on the ion temperature gradient mode instability and turbulence. It 

is discovered that this higher order polarization can affect the mode structure significantly and thus nonlinear 

turbulent transport. 

 

I. INTRODUCTION 

Gyrokinetic theory has been extensively used in the theoretical and computational studies of fusion plasmas [1-

3]. The gyrokinetic Vlasov equation describes the single particle motion in gyrocenter phase space. The 

gyrokinetic field equations, on the other hand, need to be solved for the field quantities in original phase space. 

The polarization density and current account for the density and current change during the phase space 

transformation. In the electrostatic case, the polarization density in the Poisson equation comes from the 

averaged particle position shift in the direction of perturbed electric field. Dubin et al. have originally derived 

an analytic expression for the polarization density using modern gyrokinetic theory [4]. In this derivation, the 

conventional polarization density is kept to the order of 𝑘⊥
2𝜌2 with a higher order correction in the order of 

𝑘⊥𝜌2/𝐿𝑛, where 𝐿𝑛 is the scale length of the equilibrium density with 𝐿𝑛 = (
1

𝑛

𝑑𝑛

𝑑𝑟
)

−1
. For low confinement 

plasmas, the density scale length 𝐿𝑛 is much larger than perpendicular wavelength 1/𝑘⊥. So the higher order 

correction is much smaller than the leading order term, and is often neglected in conventional gyrokinetic studies 

of core plasmas [5-7]. 

However, it is advantageous for fusion plasmas to be operated in high confinement mode (H-mode), which is 

designed to be the main operating scenario for ITER [8]. There have been keen interests in simulating turbulent 

transport for the H mode pedestal plasmas [9, 10], where the higher order polarization can be as important as 

the conventional leading order polarization while the gyrokinetic ordering still persists. Therefore, the 

gyrokinetic model needs to be carefully reviewed to include this higher order correction when simulating the 

pedestal plasmas. Important issues in this subject include adapting the Poisson equation to steep gradient 

plasmas, design and implement appropriate numerical scheme in the gyrokinetic simulation, as well as 

investigating associated prominent physics effects.  

In this work, we investigate the effect of the higher order polarization term via gyrokinetic theory and simulation 

and use ion temperature gradient (ITG) mode [11] as an example to demonstrate the physics consequence of 

this higher order term. Two different approaches, namely the initial value method in ballooning space and global 

particle simulation in toroidal geometry, are utilized to study the ITG mode physics for strong density gradient 

and weak gradient case, respectively. For both cases, the linear growth rate of ITG instability is insensitive to 



the higher order polarization, but the mode structures show visible change due to the polarization correction. In 

the ballooning space, an anti-symmetric high order correction is induced by the polarization correction. The 

kinetic electron response is found to magnify the high order polarization effect. In the GTC simulation, the 

change in the growth rate for different eigenmodes can make the most unstable mode jump from one eigenmode 

to another one, resulting in totally different mode structure. In the GTC nonlinear simulations, the high order 

polarization density is found to decrease the radial transport. 

This paper is organized as follows: In Section II, we introduce the gyrokinetic model to explain the origin of 

high order polarization density. In Section III, the high order polarization effect in ballooning space is presented. 

The implementation of corrected Poisson equation in real space used in GTC is described in Section IV and the 

GTC simulation results are provided in Section V. 

 

II. GYROKINETIC FOMULATIONS WITH HIGH ORDER POLARIZATION DENSITY 

In collisionless limit, the evolution of distribution function 𝐹𝐺𝑌(𝑹, 𝑣∥, 𝜇, 𝑡) in gyrocenter space (𝑹, 𝑣∥, 𝜇) is 

given by the Vlasov equation: 

 

𝑑𝐹𝐺𝑌

𝑑𝑡
=

𝜕𝐹𝐺𝑌

𝜕𝑡
+ �̇� ⋅

𝜕𝐹𝐺𝑌

𝜕𝐑
+ �̇�∥

𝜕𝐹𝐺𝑌

𝜕𝑣∥
= 0, 

 

(1) 

 

where 𝑹  is the gyrocenter position, and 𝜇  is the magnetic moment. In the electrostatic limit, the time 

evolution of (𝑹, 𝑣∥) is given by the following equation of motion:   

�̇� = 𝑣∥ �̂� + 𝐯𝐸 + 𝐯𝑑, (2) 

�̇�∥ = −
1

𝑚

𝐵∗

𝐵∥
∗ (𝑞∇⟨𝜙⟩ + 𝜇∇𝐵), 

 

(3) 

 

where 𝑞 and 𝑚 are the charge and mass of the particle respectively, �̂� = 𝑩/𝐵 is the unit vector along the 

magnetic field, 𝑩∗ = 𝑩 + 𝐵𝑣∥𝛻 × �̂�/Ω𝑐 , 𝐵∥
∗ = 𝑩∗ ⋅ �̂� . 𝒗𝐸  is the 𝑬 × 𝑩  drift, 𝒗𝑑  is the magnetic drift. 

These drift velocities take the following form: 

𝒗𝐸 =
�̂� × ∇⟨𝜙⟩

𝐵∥
∗ , (4) 

𝒗𝑑 =
1

𝑍𝑒𝐵∥
∗ [𝑚𝑣∥

2�̂� × (�̂� ⋅ ∇�̂�) + 𝜇�̂� × ∇𝐵], (5) 

 

where and the gyro-averaged electric potential ⟨𝜙⟩ can be evaluated by, 

〈𝜙⟩ = ∫
𝑑𝛼

2𝜋

2𝜋

0

∫ 𝜙(𝐱)𝛿(𝐱 − 𝐑 − 𝛒)𝑑𝐑, 
(6) 

 

where 𝛼  is the gyro-phase, 𝝆 = 𝒗 × �̂�/𝛺𝑐  is the gyro-radius, and Ω𝑐 = 𝑍𝑒𝐵/𝑚  is the particle’s gyro-

frequency. 

For wave lengths larger than the Debye length, the gyrokinetic Poisson’s equation based on quasi-neutrality is 

used to close the gyrokinetic system, ni(𝒙) = 𝑛𝑒(𝒙). Note that the particle density is expressed in particle 

position space. However, it is not convenient to calculate the particle density in gyrokinetic simulations. Instead, 

the “gyrocenter density” is convenient to calculate, 



�̅�(𝑥) = ∫ 𝑑3𝑣 ∫ 𝐹𝐺𝑌(𝐑)𝛿(𝐑 − 𝐱 + 𝛒)𝑑𝐑. 
(7) 

 

In the presence of electromagnetic fluctuations, the distance between particle position and gyrocenter is no 

longer a constant value 𝜌, which makes �̄� different from the particle density 𝑛(𝒙). The difference between  

𝑛(𝒙) and �̄�(𝒙) comes from the averaged particle position shift due to the electromagnetic fluctuations, which 

is termed polarization density, 

𝑛𝑝𝑜𝑙 = 𝑛(𝐱) − �̅�(𝐱). (8) 

 

Following the derivation in Refs. [12, 13], and assuming the gyrokinetic ordering 𝑒𝜙/𝑇𝑒 ≪ 1 , 𝑘∥ ≪ 𝑘⊥ , 

𝜌 /𝐿𝐵 ≪ 1 , we can obtain the relationship between particle distribution and gyrocenter distribution in the 

electrostatic limit: 

𝑓(𝑥, 𝑣) = ∫ (1 +
𝑞𝑠

𝐵

𝜕Φ̃

𝜕휃

𝜕

𝜕𝜇
) 𝐹𝐺𝑌(𝐑, 𝑣∥, 𝜇)𝛿(𝐑 − 𝐱 + 𝛒)𝑑𝐑, 

(9) 

 

where Φ̃ is the mean deviation of gyro-averaged potential from the potential felt by the particle, 

Φ̃ = ∫ 𝑑𝛼
𝛼

[𝜙(𝐑 + 𝜌) − 〈𝜙⟩(𝐑)] 𝑑𝐑. 
(10) 

 

By Taylor expanding the gyrocenter distribution function and assuming the lowest order distribution to be 

Maxwellian, we obtain the leading order and the next order polarization density, i.e., 𝑛𝑝𝑜𝑙 = 𝑛𝑝𝑜𝑙,1 + 𝑛𝑝𝑜𝑙,2 

with 

𝑛𝑝𝑜𝑙,1 = −
𝑍𝑒

𝑇
𝑛0𝜙𝑘[1 − Γ0(𝑏)], 

(11) 

𝑛𝑝𝑜𝑙,2 = −𝑖
𝑍𝑒𝑛0

𝑇
𝜌𝑡ℎ

2 𝐤 ⋅ ∇ ln 𝑛0 [−Γ0(𝑏) + (1 − 휂𝑖)Γ1(𝑏)]. 

which corresponds to the first two terms in the expansion of distribution function.   

When deriving Eq. (11), we have transformed the physical quantities to Fourier space. Here, 휂𝑖 = 𝑑𝑙𝑛𝑇𝑖 𝑑𝑙𝑛𝑛0⁄ , 

𝛤𝑛(𝑏) = 𝐼𝑛(𝑏)𝑒−𝑏, and 𝐼𝑛 is the n-th order modified Bessel function, 𝑏 = 𝑘⊥
2𝜌𝑖

2, 𝜌𝑖 = √𝑚𝑖𝑇𝑖/(𝑞𝑖𝐵). If we 

neglect the effect of non-uniform temperature, the second order polarization density 𝑛𝑝𝑜𝑙,2 would be identical 

to the results in Ref.[4]. In this work, we also focus on the effect of non-uniform density by temporarily assuming 

a weak temperature gradient. 

The first order polarization term is widely used in gyrokinetic simulation [14]. However, the second order 

polarization term only becomes important in the presence of steep density gradient. The quasi-neutrality 

condition with these two polarization terms is then given by 

𝑍𝑖𝑒𝑛0

𝑇𝑖
[1 − Γ0(𝑏)]𝜙𝑘 + 𝑖

𝑍𝑖𝑒𝑛0𝑖

𝑇𝑖
𝜌𝑖

2𝐤 ⋅ ∇ ln 𝑛0 [−Γ0(𝑏) + (1 − 휂𝑖)Γ1(𝑏)]𝜙𝑘 = 𝑍𝑖𝑒�̅�𝑖𝑘 − 𝑒𝑛𝑒𝑘, 
(12) 

where the electron polarization density is neglected because the electron gyro-radius is much smaller than the 

ion gyro-radius. Note that in the long wave length limit, the second order polarization density reduces to  −𝑖𝒌 ∙

𝛻𝑛0𝜙𝑘𝑍𝑖
2𝑒2

𝑇𝑖
~ − 𝛻𝑛0 ∙ 𝛻𝜙𝑍𝑖

2𝑒2/𝑇𝑖, which is also used in some gyrokinetic models and simulations [15, 16] as the 

correction to Poisson’s equation with density non-uniformity. 

In the small gyro-radius limit, 𝑘⊥𝜌𝑡ℎ ≪ 1, the ratio between the two polarization densities 𝑛𝑝𝑜𝑙,2/𝑛𝑝𝑜𝑙,1~1/



(𝒌 ⋅ 𝑳𝑛). For most studies in the tokamak’s core region, where the ratio between the background density scale 

length and the wavelength of the perturbed fields is small, the second or higher order polarization term can be 

ignored. However, in the region where the background particle density changes drastically, like the tokamak 

pedestal in the H-mode regime, 𝑛𝑝𝑜𝑙,2 can be comparable to 𝑛𝑝𝑜𝑙,1, as is shown in Fig. 1. The second order 

polarization must be considered seriously in both theory and simulation, especially for those modes with  

k⊥𝜌𝑖 < 1 and 𝑘𝑟𝐿𝑛~1. 

 

 

Fig. 1 Comparison of two polarization densities: 𝑛𝑝𝑜𝑙,1 and 𝑛𝑝𝑜𝑙,2 in Eq. (11) with 𝑘𝑟𝐿𝑛 = 1, which are normalized 
by 𝑍𝑖𝑒𝜙𝑛

0
/𝑇𝑖 

 
III. LOCAL SIMULATION WITH WEAK DENSITY GRADIENT 
Although the higher order polarization density 𝑛𝑝𝑜𝑙,2 is only important in the presence of steep density gradient, 

we can still start from the weak gradient to get an intuitive or qualitative picture about the tendency for its 

physics consequence. For the weak gradient case, since the polarization correction can only cause slight change 

in the mode structure and it is difficult to distinguish this effect in the GTC simulation due to the Monte Carlo 

particle noise, here we use a gyrokinetic simulation in the 1D ballooning space, to capture the subtle variation 

in the mode structure. When the density gradient in a tokamak is relatively small, 𝑘𝑟𝐿𝑛 ≪ 1, the ballooning 

representation is valid in the local limit for high n modes. From the 1D simulation in ballooning space, we 

illustrate the consequence of the new polarization 𝑛𝑝𝑜𝑙,2 for the weak density gradient case, which implies a 

more significant role for 𝑛𝑝𝑜𝑙,2 when the density gradient becomes steep. The governing equation for the ion 

guiding center distribution function is given by 

𝜕g

𝜕𝑡
= −

𝑣∥

𝑞
[𝜕𝜃𝑔 + 𝐽0𝐹0𝜕𝜃𝜙 + (𝜕𝜃𝐽0)𝐹0𝜙] − 𝑖𝜔𝐷g 

            +(𝑖𝜔∗𝑇 − 𝜔𝐷)𝐽0𝐹0𝜙, 

(13) 

 

where 𝐽0 = 𝐽0(𝑏)  with 𝑏 = 𝑘⊥
2𝜌𝑖

2 , 𝑔 ≡ ℎ − 𝐽0𝐹0𝜙 , and ℎ  is the non-adiabatic part of the perturbed ion 

distribution function, and the first order distribution function 𝛿𝑓𝑖 = ℎ − 𝑛0𝑞𝑖𝜙/𝑇𝑖, 휃 is the ballooning angle, 

𝐹0 is the equilibrium distribution function or simply Maxwellian. In addition, 𝜔𝐷 is the drift frequency, 

𝜔𝐷 = 2
𝐿𝑛

𝑅0
𝜔∗𝑖[cos 휃 + �̂�휃 sin 휃](𝑣⊥

2/2 + 𝑣∥
2)/(2𝑣𝑡ℎ,𝑖

2 ), 
(14) 

 

where �̂�  is the magnetic shear, 𝜔∗𝑇 = 𝜔∗𝑖[1 + 휂𝑖(𝐸/𝑇𝑖 − 3/2)]  with 𝜔∗𝑖 = −𝑘𝜃𝑇𝑖/(𝑍𝑖𝑒𝐵𝐿𝑛) . The quasi-

neutrality condition yields 



∫ 𝑔𝑑3𝑣 =
𝑒𝑛0

𝑇𝑒
𝜙 +

𝑍𝑖𝑒𝑛0

𝑇𝑖
(1 − 𝛤0(𝑏))𝜙 + 𝑖

𝑍𝑖𝑒𝑛0

𝑇𝑖

𝑘𝑟𝜌𝑖
2

𝐿𝑛
(𝛤1(𝑏) − 𝛤0(𝑏))𝜙, 

(15) 

 

where the second order polarization has been included in this equation. 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Fig. 2 The effect of second order polarization on ITG eigenmode structure. (a) the mode structure excluding 𝑛𝑝𝑜𝑙,2. (b) 

the mode structure including 𝑛𝑝𝑜𝑙,2 . (c) real part of the mode structure change for different values of 𝑘𝑟𝐿𝑛 . (d) 

imaginary part of mode structure change for different values of 𝑘𝑟𝐿𝑛. It is noted that 𝑘𝑟𝐿𝑛 = �̂�𝑟𝐿𝑛휃. 

 

The gyrokinetic simulations of this model system are carried out for typical ion temperature gradient (ITG) 

instability, with simulation parameters set as 휀 ≡ 𝑟/𝑅0 = 0.2 , 𝑇𝑖 = 𝑇𝑒 , 𝐿𝑛 = 0.2𝑅0 , 휂𝑖 = 3.114 , 𝑞 = 1.4 , 

�̂� = 0.78, and if not specifically mentioned, 𝑘𝜃𝐿𝑛 = 14. As one would expect from the ordering estimate, the 

simulation shows that the weak density gradient has very little effect on the mode frequency and growth rate. 

But the change of eigenmode structure in the ballooning space can be explicitly observed even with this weak 

density gradient, as is shown in Fig. 2. The normalized eigenmodes structure is plotted in Figure 2(a) & (b), 

from which we can see that the original even symmetric mode structure is tilted around the ballooning angle 

휃~0, where the unstable mode has the largest magnitude. From Figure 2(c) and (d), we can see that both real 

part and imaginary part of the mode structure could be affected, but the effect on imaginary part is more 

significant with these parameters and the effect on the real part is minimal. Not surprisingly, the effect of the 

second order polarization density is stronger for smaller 𝑘𝑟𝐿𝑛 or larger density gradient, as we vary the value 

of 𝑘𝑟𝐿𝑛 in Fig. 2(c)&(d). However, the overall effect is subdominant, since 𝑘𝑟𝐿𝑛 = �̂�𝑟𝐿𝑛휃 ∝ 𝑘𝜃𝐿𝑛�̂�휃, and 

thus the correction itself is small near 휃~0. 

 



IV. NUMERICAL IMPLEMENTATIONS OF GLOBAL GYROKINETIC SIMULATION 

As we have discussed in Sec. II, the higher order polarization may become prominent for the pedestal plasma 

that possesses steep gradient. For the steep gradient case, the ballooning representation is no longer valid and 

we ought to use the global 3D gyrokinetic simulation code GTC [14, 17, 18] to investigate the higher order 

polarization effect on the ITG turbulence. In the GTC code, the gyrokinetic model is used for ions to treat ion 

scale turbulence. The drift kinetic model is used for electrons, and we can switch freely between adiabatic 

electron model and fluid-kinetic hybrid electron model [17]. The gyrokinetic Poisson’s equation can be solved 

in real space by four-point averaging method [6] or Padé approximation [6, 19]. In this paper, we choose the 

Padé approximation for its convenience to implement the steep gradient effect caused by the higher order 

polarization. As for the Pad é  approximation, the bracket in the first term in Eq.(12) , 1 − 𝛤0(𝑏) , is 

approximated by 𝑘⊥
2𝜌𝑖

2/(1 + 𝑘⊥
2𝜌𝑖

2) . And similarly, the bracket in second term, 𝛤1(𝑏) − 𝛤0(𝑏) , can be 

approximated by −1/(1 + 𝑘⊥
2𝜌𝑖

2)
2
, as is shown in Fig. 3. Then we can rewrite Eq.(12) in the real space, 

−
𝑍𝑖

2𝑒2𝑛0

𝑇𝑖

𝜌𝑖
2∇⊥

2

1 − 𝜌𝑖
2∇⊥

2 𝜙 −
𝑍𝑖

2𝑒2𝑛0

𝑇𝑖

𝜌𝑖
2∇ ln 𝑛0

1 − 𝜌𝑖
2∇⊥

2 ⋅ ∇⊥𝜙 = 𝑍𝑖𝑒𝛿�̅�𝑖 − 𝑒𝛿𝑛𝑒 . 
(16) 

 

A more compact but approximate form is given by 

−
𝑍𝑖

2𝑒2𝑛0

𝑇𝑖
 

𝜌𝑖
2 1

𝑛0
∇ ⋅ (𝑛0∇⊥)

1 − 𝜌𝑖
2 1

𝑛0
∇ ⋅ (𝑛0∇⊥)

𝜙 = 𝑍𝑖𝑒𝛿�̅�𝑖 − 𝑒𝛿𝑛𝑒 . 

(17) 

 

The left hand side of Eq.(17) has a form similar to the first term in the left hand side of Eq.(16). When the 

density gradient is weak, |𝛻𝑛0|/𝑛0 ≪ |𝛻𝜙|/𝜙 , we can recover the classical Poisson’s equation. From the 

perspective of numerical simulation, we can simply replace the original Laplacian operator ∇⊥
2  in the classical 

Poisson solver with the new operator Δ̃ ≡ 1/𝑛0𝛻 ⋅ (𝑛0𝛻⊥) = 𝛻⊥
2 + (𝛻 𝑙𝑛 𝑛0) ⋅ 𝛻⊥. The simulation is carried out 

in the magnetic flux coordinate system [19]. Since the equilibrium density depends solely on poloidal magnetic 

flux 𝜓 , the operator correction is further expressed as (𝜕𝜓 𝑙𝑛 𝑛0)(𝑔𝜓𝜓𝜕𝜓 + 𝑔𝜓𝜃𝜕𝜃 + 𝑔𝜓𝜁𝜕𝜁) , where the 

geometric coefficients 𝑔𝜓𝜓, 𝑔𝜓𝜃 and 𝑔𝜓𝜉, corresponds to the different components of the geometric tensor 

with 𝑔𝑋𝑌 = 𝛻𝑋 ∙ 𝛻𝑌. The detailed derivation and implementation are given in Appendix B. 

 

 

 

Fig. 3. Padé approximation of 𝛤0 − 𝛤1.  



 

V. RESULTS FROM GTC SIMULATION 

Next we carry out gyrokinetic simulations with steep gradients using the GTC code for the ITG instability to 

observe the effects of higher order polarization correction. The following parameters are used for the simulation: 

𝑇𝑖 = 𝑇𝑒 = 2.2 keV , 𝑛𝑒 = 8.93 × 1018 m−3 , 𝐿𝑇𝑖/𝑅0 = 0.040 ,𝐿𝑇𝑒/𝑅0 = 0.040 ,𝐿𝑛/𝑅0 = 0.027 , 𝑘𝑟𝐿𝑛~2 , 

𝑞 = 1.4, �̂� = 0.78. The adiabatic electrons are assumed in the simulation to exclude kinetic electron effects for 

simplicity in the beginning. We use a concentric circular cross section tokamak for the simulation. The 

equilibrium profiles are given in the analytical formulations [20], in which a number of control coefficients can 

be adjusted to change the plasma profile and the associated gradients and thus the nature of the instability can 

be adjusted as well. 

It turns out that the simulation shows negligible change in the linear frequency and growth rate change from the 

high order polarization density. The poloidal mode structures are shown in Fig. 4(a) & (b) for cases with and 

without the second order polarization density. We can see only a slight change in linear mode structure for the 

ITG instability. The nonlinear heat conductivity is found decreased after the correction of the second order 

polarization, as is shown in Fig. 4(c). When the kinetic electron response is included, the effect of the higher 

order polarization effect is amplified, as can be seen in Fig. 5. Although the linear growth rate is only slightly 

changed, the poloidal mode structure shows significant rotation in Figs. 5(a) & (b). That means the higher order 

polarization correction provides visible modulation on the fast growing eigenmodes, and some different 

eigenmode becomes the most unstable one with the correction. Note that in the ITG simulation with adiabatic 

electrons, the electron response is much larger than the ion polarization, meaning that the potential change can 

be shielded by the adiabatic electron response in a large degree. While in the simulation with kinetic electron 

response, the shielding from the electrons is weaker, which makes important the total ion polarization and then 

the higher order ion polarization as well. 

 

(a) 

 

(b) 



 

(c) 

 

Fig. 4. ITG simulation with adiabatic electrons for high order polarization correction: (a) 2D mode structure on poloidal 

plane using traditional Poisson’s equation; (b) 2D mode structure on poloidal plane using modified Poisson’s equation 

with higher order polarization correction; (c) time evolution of heat conductivity with and without the higher order 

polarization correction. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5. 2D structure of ITG mode with kinetic electron response on the poloidal plane calculated by GTC: (a) traditional 

Poisson’s equation; ( b )  modified Poisson’s equation. (c)  Comparison of the linear growth of the ITG  mode for cases 



with and without higher order polarization. (d) Comparison of nonlinear ITG heat transport for cases with and without 

higher order polarization. 

 

VI. Conclusion 

In this work, we have demonstrated the effect of high order ion polarization density effect in the gyrokinetic 

simulation. The theoretical analysis shows the ratio between high order polarization density and conventional 

polarization density is in the order of 1/𝑘𝑟𝐿𝑛, which means both terms are equally important and thus need to 

be considered on an equal footing in steep density gradient regime. We compared the ITG mode in the 

ballooning space simulations and global gyrokinetic simulation using GTC to illustrate the effect of the higher 

order polarization correction. In the global GTC simulations, the ITG frequency and growth rate is found 

insensitive to the higher order polarization correction and the mode structure change due to this correction is 

more visible. We find that in the local 1D ballooning space simulation, the high order correction induces an anti-

symmetric structure for the linear ITG mode. The nonlinear GTC simulation shows the radial heat transport is 

suppressed when the high order polarization is considered. The simulation with kinetic electron response is 

affected more significantly by the high order correction, because the weaker shielding effect from adiabatic 

response. In certain parameter regime, the higher order correction can lead to a rotation for the poloidal mode 

structure, as demonstrated by the global ITG simulation with kinetic electrons. The nonlinear simulation further 

shows that the rotation of the linear mode structure can suppress the turbulent transport.  

 

Appendix A: Derivation of polarization density in electrostatic limit 

Here we basically follow the derivation in the modern gyrokinetic theory [12, 21-23] to derive the polarization 

density under steep gradient. The preliminary transformation is from the normal (𝐱, 𝐯) Cartesian coordinates to 

(𝒙, 𝜇, 𝑣∥, 𝛼), where we can write the Lagrangian 1-form in the new phase space as  

Γ = (𝑒𝐀 + 𝑚𝑣∥�̂� + 𝑚𝑣⊥�̂�⊥) ⋅ 𝑑𝐱 − (
1

2
𝑚𝑣∥

2 + 𝜇𝐵) 𝑑𝑡. (18) 

 

Note that both the symplectic part of the Lagrangian involves fast gyromotion oscillations. Given the normal 

gyrokinetic ordering, 𝜖𝐵 = 𝜌/𝐿𝐵 ≪ 1, we can use the Lie-transformation in the phase space to eliminate the fast 

gyromotion oscillation in the Lagrangian, and to the leading order, the new guiding center Lagrangian is given 

by 

Γ𝐺𝐶 = (𝑒𝐀(𝐗𝐺𝐶) + 𝑚𝐯∥,𝐺𝐶) ⋅ 𝑑𝐗𝐺𝐶 − 𝜇𝐺𝐶

𝑚

𝑒
𝑑휃𝐺𝐶 − (

1

2
𝑚𝑣∥,𝐺𝐶 + 𝜇𝐺𝐶𝐵) 𝑑𝑡, (19) 

 

where the subscription GC stands for ‘guiding center space’. The transformation is simply 𝑿𝐺𝐶 = 𝒙 + 𝝆, and 

any functions of x  should also be transformed 𝑓(𝒙) → 𝐹𝐺𝐶(𝑿𝐺𝐶) = 𝑒𝑥𝑝[ − 𝝆 ⋅ 𝛻]𝑓(𝑿𝐺𝐶). 

When the electrostatic perturbation enters the system, an additional term is added to the Hamiltonian part 

𝛤𝐺𝐶 = (𝑒𝐀(𝐗𝐺𝐶) + 𝑚𝐯∥,𝐺𝐶) ⋅ 𝑑𝐗𝐺𝐶 − 𝜇𝐺𝐶

𝑚

𝑒
𝑑휃𝐺𝐶 − (

1

2
𝑚𝑣∥,𝐺𝐶 + 𝜇𝐺𝐶𝐵 + 𝑒𝜙𝐺𝐶) 𝑑𝑡. (20) 

 

Note that the 𝜙𝐺𝐶 = 𝜙(𝑿𝐺𝐶 − 𝝆)  induces another fast oscillation as well, despite that 𝜙(𝒙)  is a slowly 

varying quantity. Another transformation from guiding center space to gyrocenter space can be performed to 

eliminate the fast gyromotion oscillations. Here because the perturbation only appears in the Hamiltonian part, 

we can write the new Lagrangian in which the symplectic part functional form remains unchanged,(i.e. The 

Hamiltonian representation in [13], and the new Lagrangian in the extended gyrocenter phase space is given by 



Γ𝐺𝑌 = (𝑒𝐀𝟎(𝐗𝐺𝑌) + 𝑚𝐯∥,𝐺𝑌) ⋅ 𝑑𝐗𝐺𝑌 − 𝜇𝐺𝑌

𝑚

𝑒
𝑑휃𝐺𝑌 − 𝑤𝐺𝑌𝑑𝑡

− (
1

2
𝑚𝑣∥,𝐺𝑌 + 𝜇𝐺𝑌𝐵 + 𝑒⟨𝜙𝐺𝐶(𝐗𝐺𝑌, 𝑡)⟩ − 𝑤𝐺𝑌) 𝑑𝜏, 

(21) 

 

where 𝑤𝐺𝑌  is the energy coordinate, and 𝜏  is the time-like Hamiltonian orbit variable, ⟨𝜙𝐺𝐶⟩  is the 

gyrophase averaging of the perturbed potential in “guiding center space”, ⟨𝜙𝐺𝐶⟩ = 1/2𝜋 × ∫ 𝑑휃𝐺𝐶𝜙(𝐱 + 𝛒). 

Since we carry out the transformation from particle space to guiding center space, and then the transformation 

from guiding center space to gyrocenter space, we can write out the relation between the distribution function 

in particle space and that in the gyrocenter space. Considering the orderings 𝑘∥ ≪ 𝑘⊥, 𝜌 /𝐿𝑛 ≪ 1, we have the 

following relation to the first order 

𝑓 = 𝑒𝝆⋅𝛻𝐹𝐺𝑌 + 𝑒𝝆⋅𝛻 (
𝑒

𝑇
(𝜙(𝒙 − 𝝆) − �̄�(𝒙)) 𝐹𝐺𝑌). (22) 

 

Note the operator 𝑒𝝆⋅∇acts on both perturbed and equilibrium quantities in the bracket. In the Fourier space, we 

assume the angle between 𝐤 and 𝛒 is 𝛼 without losing generality. The perturbed quantities in the second 

term of Eq.(22) related to the potential is 

𝑒𝜌⋅∇ (𝜙(𝒙 − 𝝆) − �̄�(𝒙)) → exp(𝑖𝑘⊥𝜌 sin 𝛼) [𝜙𝑘 exp(−𝑖𝑘⊥𝜌 sin 𝛼)] 

                                              = 𝜙𝑘 − 𝐽0(𝑘⊥𝜌)𝜙𝑘 exp(𝑖𝑘⊥𝜌 sin 𝛼). 

(23) 

 

Assume that the angle between 𝐤  and 𝛻𝐹𝐺𝑌  is 𝜑  and the angle between 𝛒  and ∇𝐹𝐺𝑌  is 𝛼 + 𝜑 . The 

equilibrium part to the first order of 𝜌/𝐿𝑛 in the second term of Eq.(22) is 

𝑒𝑥𝑝(𝝆 ⋅ 𝛻) (
𝑒

𝑇
𝐹𝐺𝑌) = 𝐹𝐺𝑌 + 𝐹𝐺𝑌𝜌 |𝛻 (

𝑒

𝑇
𝑙𝑛 𝐹𝐺𝑌)| 𝑠𝑖𝑛(𝛼 + 𝜑). (24) 

 

Neglecting the nonlinear effect in the transformation by only keeping equilibrium part of 𝐹𝐺𝑌 in Eq.(22) and 

further assuming the zeroth order of 𝐹𝐺𝑌 is Maxwellian distribution, we can obtain the expression for 𝑓 

𝑓𝑘 = 𝑒𝑖𝑘⊥𝜌 𝑠𝑖𝑛 𝛼𝐹𝐺𝑌,𝑘 + (𝜙𝑘 − 𝐽0(𝑘⊥𝜌)𝜙𝑘𝑒𝑖𝑘⊥𝜌 𝑠𝑖𝑛 𝛼) × 

          (𝐹𝑚 + 𝐹𝑚𝜌|𝛻 𝑙𝑛 𝑛| [1 + 휂 (
𝑚𝑣2

2𝑇
−

5

2
)] 𝑠𝑖𝑛(𝛼 + 𝜑)). 

(25) 

 

The polarization density is obtained by integrating the second part of Eq.(24), and it can be separated to two 

terms corresponding to the two terms in Eq.(23) . 

𝑛𝑝𝑜𝑙,1 = ∫ 𝑑3𝑣(𝜙𝑘 − 𝐽0(𝑘⊥𝜌)𝜙𝑘𝑒𝑖𝑘⊥𝜌 𝑠𝑖𝑛 𝛼)𝐹𝑀 = −
𝑒

𝑇
𝑛0𝜙𝑘[1 − 𝛤0(𝑏)], 

(26) 

𝑛𝑝𝑜𝑙,2 = ∫ 𝑑3𝑣 (𝜙𝑘 − 𝐽0(𝑘⊥𝜌)𝜙𝑘𝑒⊥
𝑖𝑘𝜌 sin 𝛼

)𝐹𝑀𝜌|∇ ln 𝑛| [1 + 휂 (
𝑚𝑣2

2𝑇
−

5

2
)] sin(𝛼 + 𝜑) 

            = −𝑖
𝑒

𝑇
𝑛0𝜙𝑘𝜌𝑡ℎ

2 𝑘⊥|∇ ln 𝑛0| cos 𝜑 [Γ1(𝑏)(1 − 휂) − Γ0(𝑏)]. 

 

(27) 

When calculating  𝑛𝑝𝑜𝑙,2 , we have neglected 𝑂(𝑘⊥
4𝜌𝑡ℎ

4 )  terms, which is consistent with the edge plasma 

ordering. This new term of 𝑛𝑝𝑜𝑙,2 is a correction to the polarization density associated with steep gradient. 

 

Appendix B: Implementation of gyrokinetic Poisson equation with steep gradient 



The steep gradient correction discovered in the Appendix A needs to be included in the gyrokinetic Poisson 

equation to simulate edge plasma physics accurately. For this purpose, we ought to implement numerically the 

operator Δ̃ ≡ 1/𝑛0𝛻 ⋅ (𝑛0𝛻⊥) = 𝛻⊥
2 + (𝛻 𝑙𝑛 𝑛0) ⋅ 𝛻⊥ . In magnetic flux coordinates system (𝜓, 휃, 휁) , and 

normally in equilibrium plasmas 𝛻 𝑙𝑛 𝑛0 = 𝛻𝜓𝜕𝜓𝑛0/𝑛0  and correction is (𝛻 𝑙𝑛 𝑛0) ⋅ 𝛻⊥ = 𝜅𝑛(𝑔𝜓𝜓𝜕𝜓 +

𝑔𝜓𝜃𝜕𝜃 + 𝑔𝜓𝜁𝜕𝜁)  and in 2D toroidal system, 𝑔𝜓𝜁 ≈ 0 . In GTC code, we have developed a 11-point 

interpolation scheme to implement the perpendicular Laplacian operator ∇⊥
2  [19]. Fortunately, we already have 

the discrete forms for the differential operators such as 𝜕𝜓 and 𝜕𝜃. Therefore, we simply add the two additional 

terms at the relevant 11 points to implement the new Δ̃ operator with minimal modification to the original code. 

Because we explicitly consider the limit 𝑘⊥𝐿𝑛~1, so the 𝛻⊥ operator and equilibrium quantities are no longer 

commutative. If we separate the electron density perturbation to the adiabatic response and non-adiabatic 

response. The gyrokinetic Poisson equation Eq. (16) becomes 

−
𝑍𝑖

2𝑛𝑖

𝑇𝑖

𝜌𝑖
2Δ̃

1 − 𝜌𝑖
2Δ̃

𝛿𝜙 +
𝑒2𝑛𝑒

𝑇𝑒
𝛿𝜙 = 𝑍𝑖𝛿�̄�𝑖 − 𝑒𝛿𝑛𝑒,𝑘 (28) 

 

After some algebra, we obtain 

−𝜌𝑖
2Δ̃𝛿𝜙 + (1 − 𝜌𝑖

2Δ̃) (
𝑇𝑖

𝑍𝑖
2𝑛𝑖

𝑒2𝑛𝑒

𝑇𝑒
𝛿𝜙) = (1 − 𝜌𝑖

2Δ̃)
𝑇𝑖

𝑍𝑖
2𝑛𝑖

(𝑍𝑖𝛿�̄�𝑖 − 𝑒𝛿𝑛𝑒,𝑘) (29) 

 

Therefore, we can solve the electric potential by inverting the operator acting on 𝛿𝜙 in the left hand side of 

the preceding equation. 
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