A neoclassically optimized compact stellarator with four planar coils
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A neoclassically optimized compact stellarator with simple coils has been designed. The magnetic
field of the new stellarator is generated by only four planar coils including two interlocking coils of
elliptical shape and two circular poloidal field coils. The interlocking coil topology is the same as that
of the Columbia Non-neutral Torus (CNT)[1]. The new configuration was obtained by minimizing
the effective helical ripple [2] directly via the shape of the two interlocking coils. The optimized
compact stellarator has very low effective ripple in the plasma core implying excellent neoclassical
confinement. This is confirmed by the results of the drift-kinetic code SFINCS[3] showing that the
particle diffusion coefficient of the new configuration is one order of magnitude lower than CNTs.

I. INTRODUCTION

Stellarator is one of main approaches to magnetic fu-
sion energy. Compared to the main stream tokamaks,
stellarators have advantages of naturally stead state op-
eration without disruptions. The magnetic field of stel-
larators are mainly provided by external coils. Therefore
the physics properties of stellarators can be largely con-
trolled by external coils and can thus be optimized by
varying coil geometry. However 3D stellarator coils usu-
ally have complex 3D geometry and they are difficult and
costly to build. It is important to explore the possibility
of optimized stellarators with simple coils.

In this work a neoclassically optimized compact stel-
larator with only four simple coils has been designed. The
new stellarator is of CNT type with two InterLocking (IL)
coils and two poloidal field coils. The new configuration
is obtained by direct optimization from the shape of the
two interlocking coils. This direct method is different
from the conventional two-stage optimization where the
first stage is optimization of physics properties of stellara-
tors from the shape of the last closed flux surface. The
second stage is design of 3D coil set which is optimized
in such a way that the shape of plasma boundary it gen-
erates closely matches the plasma boundary obtained in
the first stage. The two-stage method usually works well
and it was successful in design of advanced stellarators
such as HSX[4], W7-X[5], and NCSX][6] etc. However
it suffers from the fact that the coils found in the sec-
ond stage cannot perfectly recover the optimized plasma
boundary obtained in the first stage. Thus usually some
iterations between the first stage and second stage are
needed in order to obtain the desired physics and engi-
neering properties. In view of this, we adopted the direct
optimization method from coils. Specifically we carry out
optimization by varying the shape of stellarator coils to
directly control the physics properties of vacuum magnet-
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ic field of stellarators. Our primary optimization target is
the so called 1/v neoclassical transport[2] due to helical
ripple. This transport is due to finite magnetic drift of
trapped particles in helical wells. The neoclassical trans-
port is a serious issue for stellarators. The 1/v scaling is
very unfavorable for fusion reactors where plasma tem-
perature is necessary high and collision frequency is very
low.

The primary goal of our design is to find a candidate
for a toroidal magnetic confinement device to be built at
Zhejiang University. We chose compact stellarator topol-
ogy of CNT type in our design for two reasons. First,
CNT is arguably the world simplest stellarator with only
four circular coils including two interlocking coils and two
poloidal field coils. Therefore it is relatively easy to build.
Second, our direct optimization method is suitable for
stellarator design of CNT type because the shape of only
one coil needs to be considered in the optimization and
thus the degree of freedom is modest. It should be point-
ed out that the original goal of CNT was non-neutral
plasma experiment and thus the neoclassical transport
due to helical ripple was not emphasized. In contrast,
our design goal is experimental study of fully ionized neu-
tral plasmas. Therefore the neoclassical confinement is
our primary focus in the configuration optimization. We
will show that excellent neoclassical confinement in the
plasma core can be achieved with two interlocking coils
of elliptical planar shape. The optimized configuration
is to be called Zhejiang university Compact Stellarator

(ZCS).

The paper is organized as following. Section II de-
scribes the detailed optimization process. In section III,
an optimized configuration with good neoclassical con-
finement is described including coil geometry and mag-
netic flux surfaces as well as rotational transform profile.
Section IV shows the calculated 1/v neoclassical trans-

port coefficient egﬁ of ZCS. In section V, the simula-
tion results of single particle confinement and neoclassi-
cal transport are presented and discussed. In section VI,
the effects of finite plasma beta on equilibrium and the
effective ripple are studied. In section VII, conclusions of



this work are given.

II. NUMERICAL METHODS

For the purpose of carrying out stellarator optimiza-
tion directly from coils, a code suite has been developed
for calculating vacuum magnetic field from coils, mag-
netic flux surfaces as well as particle motions in the mag-
netic field. The magnetic field is calculated from current-
carrying coils straight forwardly using the Biot-Sarvant
law. A line current is assumed for simplicity. The vacu-
um magnetic flux surfaces and corresponding rotational
transform profile are calculated by following the magnet-
ic field lines. The 1/v neoclassical coefficient is calculated
by integrating along magnetic field lines[2]. The neoclas-
sical transport is also evaluated by the drift kinetic code
SFINCS|3].

IIT. OPTIMIZATION METHOD

Here we describe the method used for optimizing stel-

larators directly from coils. In this work we mainly aim

to minimize the effective ripple coefficient eiﬁ of neo-

classical transport in the 1/v regime. In addition we
also consider rotational transform profile in optimization
targets. Therefore we aim to minimize the following com-
bined target function.
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where f*"9° is the desired value of ith target f/*"9¢
and w; is the optimization weight of the ith target. The
goal of the optimization is to minimize the total deviation
of the targets from the desired target values by varying
the shape of each coil. The size of each weight is chosen
based on the relative importance of the corresponding
target.

Assuming every coil is a closed smooth curve, we use
Fourier series[7] to define the shape of each coil in Carte-
sian coordinate as

T =1aeo+ Z [ n cos(nb) + x4 sin(nd)], (2)
n=1,nys

Y =Yeo+ Z [Ye,n cos(nb) + ys.n sin(nb)], (3)
n=1,nys

Z2= 2.0+ Z [2¢,n cOs(nf) + z5 psin(nd)], (4)
n=1,nys

where the angle parameter 6 ranges [0, 27] so that the
coil curve is closed. From above formula we see that
the shape of each coil is determined by 3 x (2ny + 1)
Fourier harmonics, with n; being the cutoff harmonic

number. The coil current I is also a free parameter, so
the total degree of freedom for each coil is 3 x (2n;+1)+
1. It should be noted that, almost any closed smooth
curve without straight sections or sharp corners can be
represented well by Fourier harmonics.

As mentioned above, we choose CNT as starting point
of our optimization. The main reason is that CNT is the
simplest stellarator with only four circular coils. Our ap-
proach is optimizing neoclassical confinement by varying
the shapes of the two interlocking coils. Furthermore, be-
cause it is a two period stellarator, the shapes of the two
interlocking coils are necessarily the same. Therefore the
degree of freedom is minimized and is much smaller than
that of conventional stellarators. Regarding the two oth-
er coils, their circular shapes and the distance between
them can be fixed because they only provide a vertical
field for the CNT-like stellarator. The current of the t-
wo vertical field coils can also be fixed because only the
ratio of their current and that of the interlocking coils is
important.

FIG.1 plots the coil configuration of CNT. The two
IL coils can be represented by only four Fourier har-
monics including z.o = £0.313,z.1 = £0.405,y,1 =
F0.255,z517 = 0.315, in which z.¢ and |z.1] =

\/m represent the half distance between the t-
wo coil centers and the radius of the coils, respectively.

The shapes of coils are elliptic when |z1| # y/y2; + 22,
. The angel between the two coil planes is controlled by
0 = 2 % arctan (z5,1/ys1). If other higher order Fourier
harmonics (n > 1) are kept, the shape of interlocking coil-
s changes from planar coil to three dimensional coil. For
poloidal field coils, Fourier harmonics zs1 = z.1 = 1.08
and z.,; = £0.405 represent the coil radius and the half
distance between the center of two coils, respectively.

A combination of global optimization and Levenberg-
Marquardt[8] algorithm is adopted in our optimization
process. For the global optimization method, we chose
an appropriate parameter range and associated n; dis-
crete grid points for each harmonic. Thus, the total mesh
points in the multi-dimensional phase space of all Fourier
harmonics is n)'* with Np = 3 x (2ns + 1) + 2 being the
total degree of freedom. Here N includes the current of
the two IL coils and the radius of the two poloidal field
coils. Considering the stellarator symmetry, the degree
of freedom is reduced to Np = 3 X (ny +1). Each mesh
point represents one unique stellarator configuration and
the corresponding combined target function is evaluat-
ed. In this way, a global minimum can be found as long
as the total number of mesh points are limited and the
required computational resource and time is reasonable.
For the case of only n=0 and n=1 harmonics are includ-
ed, the total degree of freedom is only Ny = 6 and the
total number of mesh points is 10 for n; = 10. Once a
global minimum is found, we can then do a refined lo-
cal search near the neighborhood of this global minimum
using Levenberg-Marquardt algorithm. In this second
phase of optimization, higher harmonics can be included



FIG. 1: CNT coils

Parameter | Value| Range
Ze,0 0.313[0.3~0.5
Interlocking Te,1 0.405{0.2~0.6
coil Ys,1 0.255(0.2~0.4
Zs,1 0.315{0.2~0.6
Poloidal  |zs1 = x¢,1| 1.08 [0.5~1.2
field coil Ze,1 0.405| 0.405
Current ratio| Ir./Ipr | 2.25 1~5

TABLE I: The specific parameters variation in optimization

for three dimensional coils. In the actual optimization,
up to ny = 3 was included. It turns out that, as will be
shown later, inclusion of n > 1 harmonics only leads to
a slight improvement in the target function. Therefore
in this work we focus on the globally optimized config-
uration with Fourier harmonics up to ny = 1 and the
specific parameters variation are showed in Table I. In
this case the shape of IL coils is simply planar.

IV. BASIC PARAMETERS OF NEW
CONFIGURATION ZCS

FIG.2 shows the coil system of the new configuration
ZCS (orange color) obtained using global optimization
with only n» = 0 and n = 1 Fourier harmonics. The
IL coils of CNT are also shown in FIG.2(a) for com-
parison. Table II lists coil parameters of ZCS and C-
NT including Fourier coefficients of the interlocking coils
and coil current ratio between IL coils and vertical field
coils. The shape of IL coils of the new configuration is
now elliptical instead of circular shape of CNT’s. The
long and short diameter is 0.99m and 0.88m respectively
(FIG.2(b)). The angle and center distance between the
two IL coils are 81.108° and 0.6766m (FIG.2(c)). The

radius of the circular poloidal field (PF) coils and the
center distance is 1.08m and 0.81m respectively. These
two parameters are the same as CNT’s. The current ra-
tio between IL coils and PF coils is 1.6 : 1.0. The main
difference between ZCS’s coils and CN'T’s is the shape of
the interlocking coils. As a result, the neoclassical con-
finement of the new configuration is much better than
CNT’s.

(c)Side view

FIG. 2: View of the new configuration

FIG.3 plots the 3D magnetic flux surfaces relative to
the two IL coils of ZCS. FIG.4 plots the cross sections
of last closed flux surfaces of ZCS (solid lines) and CNT
(dashed lines) respectively for three toroidal angles, ¢ =
0°,45° and 90°. We observed that the shapes of flux
surfaces of the new configuration are similar to those of
CNTs. A notable difference is that the last closed surface



Parameter | CNT' | ZCS
Ze,0 0.313]0.3383

Interlocking Te,1 0.405| 0.44
coil Ys,1 0.255| 0.322

Zs,1 0.315| 0.376

Poloidal Ts1 = Ze,1| 1.08 | 1.08
field coil Ze,1 0.405| 0.405

Current ratio| I;p/Ipr [ 2.25| 1.6

TABLE II: The Fourier Harmonics of ZCS in comparison with
CNT

FIG. 3: The 3-D magnetic surface construction

at ¢ = m/2 shifts inward considerably as compared to
that of CNT.

The rotation transform profile of the new configuration
is plotted in FIG.5. We observed that the new profile is
close to that of CNT. This is not surprising since The ro-
tational transform profile of CNT was chosen as a target.

V. THE NEOCLASSICAL CONFINEMENT OF
ZCS

Here we show that the neoclassical confinement of the
optimized compact stellarator is much better than that
of CNT. The neoclassical transport is evaluated by cal-
culating the effective ripple parameter and by using the

Flux Surface Evolution

Dashed line: CNT
\ Solid line: ZCS

FIG. 4: Cross-sections of the boundary magnetic surface
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FIG. 5: Rotation transform evolution
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FIG. 6: eiﬁ comparison between the NEO code and our code

drift-kinetic code SFINCS.

A. The effective ripple

For stellarators, the neoclassical transport due to heli-
cal ripple is a serious problem since this transport scales
as 1/v for small collision frequency v. This scaling is
very unfavorable for fusion reactors where plasma tem-
peratures are necessary high and collision frequencies are
small. Thus this neoclassical transport must be min-
imized to achieve high plasma confinement. This 1/v
transport is proportional to the effective helical ripple
parameter 62/ 3 Thus this ripple parameter is chosen as
the main target for our optimization. It was shown that
ei’ﬁ is only a function of magnetic field geometry and
can be calculated straight forwardly by integrating along
a magnetic field line[2]. A module has been developed in

our code suite for calculating ezﬁ and has been bench-

marked against the NEO code[9]. FIG.6 compares the
calculated effective ripple of a stellarator using our mod-
ule with that of the NEO code. The agreement between
the results of two codes is excellent.

FIG.7 shows the calculated egﬁ of ZCS and CNT as

functions of the normalized radial variable \/v¥/®edge ,
in which %eqq4e is the boundary poloidal flux. We ob-
serve that the effective ripple of the optimized configu-
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FIG. 7: Parameter eiﬁ for ZCS and CNT

ration is much smaller than that of CNT especially in
the core where it is two order of magnitude smaller. It
is remarkable that this huge improvement in neoclassical
confinement is achieved by simple planar coils of elliptical
shape.

B. Evaluation of neoclassical transport using
SFINCS

SFINCS is a kinetic code for calculation of neoclassical
transport in stellarators by solving the steady-state drift-
kinetic equation for multiple species. We use SFINCS
code to calculate neoclassical particle fluxes of both elec-
trons and ions with effects of ambipolar radial electric
field. The density profiles of ions and electrons consid-
ered are shown in FIG.8(a). The temperature profiles are
chosen to be uniform at T, = 2T; = 200eV for simplicity.
FIG.8(b) shows the electron particle fluxes of both CNT
and ZCS. The results indicate that the neoclassical trans-
port of ZCS is much lower than that of CNT especially
in the plasma core where the particle flux of ZCS is one
order of magnitude lower. Based on these findings, we
conclude that the new optimized configuration has very
good neoclassical confinement.

C. quasi-symmetry and quasi-omnigeneity

We now consider the degree of quasi-symmetry and
quasi-omnigeneity to understand the reason of good neo-
classical confinement of the optimized configuration ZC-
S. Quasi-symmetry is an effective concept for improv-
ing neoclassical transport in stellarators. Boozer showed
that the particle drift orbits in stellarator are equiv-
alent to those of axi-symmetric tokamaks if the mag-
netic field strength is axis-symmetric in Boozer coordi-
nates, even though the structure of magnetic field is three
dimensional[10]. The magnetic field distribution on a flux
surface can be expressed by B = }_ By, ncos(mb —
n(), where 6 and ( are boozer coordinates. For quasi
helical-symmetry configuration, such as Helical Symmet-
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FIG. 8: SFINCS results for initial density profiles

ric Experiment(HSX)[4], the dominant Fourier compo-
nents B,, ,, have a single helicity and other components
are very small. For quasi axi-symmetry configurations,
the magnetic field spectrum is nearly axi-symmetric with
all the non-axi-symmetry components being very smal-
l. Quasi-axisymmetry has been used to design compact
stellarators with excellent neoclassical confinement. Ex-
amples of quasi-axisymmetric stellarators include the Na-
tional Compact Stellarator Experiment (NCSX)[6] etc.
Another approach of optimizing neoclassical confinement
is quasi-omnigeneity. This approach was used to design
Wendelstein 7-X (W7-X)[5] by minimizing the averaged
particle drift.

FIG.9 plots the distribution of magnetic field strength
on the last closed flux surface for both CNT (a) and the
optimized configuration (b). We observe that the new
configuration is closer to quasi-axisymmetry than CNT.
This is confirmed by Fourier spectrum of magnetic field
strength shown in FIG.10(a) for CNT and Fig.10(b) for
the optimized configuration. Furthermore we evaluate
quasi-omnigeneity by looking at the minimums of mag-
netic field strength along a field line. It is known that
the degree of quasi-omnigeneity can be largely measured
by how close the minimums of magnetic field strength
being a constant. In Fig.11, we choose 12 local mini-
mums at B<0.357 and calculate the standard deviation-
s of these local minimums. The result shows that the
standard deviation dzcs = 0.05 of ZCS is about 50% of
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FIG. 11: Magnetic field strength distribution on field line

CNT’s (d¢nr = 0.10). This indicates that ZCS is much
closer to quasi-omnigeneity than CNT.

VI. THE FINITE BETA EFFECTS ON THE
EFFECTIVE RIPPLE

So far we have only consider stellarators with vacu-
um magnetic field and effects of finite plasma pressure
have been neglected. Here we consider the effects of fi-
nite plasma beta on the helical ripple. The equilibria of
ZCS at finite pressures are calculated using the VMEC
code. The fixed boundary condition is used for simplic-
ity. The bootstrap current is calculated using SFINCS

and is included in the finite beta equilibria. We use the

NEO code to calculate the effective ripple parameter eiﬁ

at finite plasma beta.

The pressure profile is chosen to be p = po(1 —72)3 as
shown in Fig.12(a) for two values of the volume-averaged
plasma beta 3, where pg is a constant used to control the
equilibrium beta and r is the square root of the normal-
ized poloidal flux. From Fig.12(b) we observe that, as
B increases from zero to 2%, the central iota decreases
slightly while the edge iota increases substantially due to
bootstrap current. Fig.12(c) shows that, as 8 increases

to 2%, the effective ripple parameter egﬁ changes little in
the core but decreases by about a factor of two near the
edge. Optimization of neoclassical confinement at finite
beta will be considered in future work.

VII. CONCLUSIONS

In conclusion, a new compact stellarator with sim-
ple coils and good neoclassical confinement has been de-
signed. The magnetic field of the new stellarator is gen-
erated by only four planar coils including two interlock-
ing coils of elliptical shape and two circular poloidal field
coils. The neoclassical optimized configuration was ob-
tained by a global minimization of the effective helical
ripple directly from the shape of the two interlocking coil-
s. The optimized compact stellarator has very low level
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of effective ripple in the plasma core implying excellent
neoclassical confinement. The results of the drift-kinetic
code SFINCS show that the particle flux of the new con-
figuration is one order of magnitude lower than CNT’s
in the core. Future work will explore the possibility of a
compact stellarator with additional desired physics prop-
erties including robust MHD stability and low turbulent
transport.
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