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The gyrokinetic simulation using GTC is carried out for the dissipative trapped 

electron mode (DTEM), which is an important source for the electrostatic turbulence 

in the pedestal of tokamak plasmas. The DTEM instability is identified for the edge 

plasmas and its dependence on the wavelength and collisional frequency is obtained 

by both simulation and theory. It is shown for the first time that the linear gyrokinetic 

simulation results are fully consistent with that from the analytic theory under the 

edge parameters. This suggests that the GTC code can simulate accurately the DTEM 

instability in the pedestal. It provides a useful benchmark for gyrokinetic simulations 

of the edge plasmas.  

I  Introduction 

Low frequency drift-wave turbulence induced by plasma pressure gradient is an 

important candidate for anomalous transport in tokamaks. In particular, turbulence 

driven by trapped electron instabilities, namely collisionless trapped electron mode 

(CTEM) and dissipative trapped electron mode (DTEM), can be responsible for the 

radial electron transport in tokamak plasmas. The CTEM, excited by precessional 

resonance of the magnetically trapped electrons, has been extensively investigated by 

theory [1][2] and gyrokinetic simulation [3][4][5]. Many physics understandings of 
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the DTEM have been gained, in particular its linear instability threshold, nonlinear 

saturation, and transport characteristics. On the other hand, the DTEM in the tokamak 

pedestal region is less well understood [6]. Using a simple Krook collision operator, 

Cheng et. al. presented a linear theory of DTEM for the instability condition and two 

dimensional mode structures [7]. Recently, interest on the DTEM has been revived by 

the observation of the so called edge coherent mode observed in the EAST 

experiments [8]. In the H-mode regime, the DTEM can play an important role in the 

pedestal region since (1) the population of the trapped electrons increases with radius 

and maximize near the plasma edge, (2) the edge plasma temperature drops fast and 

becomes so low that the collisions can not be ignored, and (3) the pressure profile is 

so steep that the resonant interaction between the drift waves and the trapped 

electrons is rather weak. In this work, we use the gyrokinetic code GTC [9] to 

investigate the linear physics of DTEM in the tokamak pedestal. For the first time the 

pedestal DTEM simulations are fully consistent with the analytical theory that 

includes the pitch angle scattering collisions. This suggests that the GTC code can 

simulate accurately the DTEM instability for tokamak edge plasmas. Accordingly, the 

GTC code should be useful for simulating the DTEM turbulence at the tokamak edge, 

where the plasma has sharp gradients and collisions are important. In addition, this 

work provides an ideal example to benchmark the capability of the gyrokinetic code 

in simulating the DTEM instability in the tokamak edge. 

This paper is organized as follows. In Sec. II we discuss the simulation model and 

parameters. Then the results for the DTEM obtained from the GTC simulation are 

presented, and compared with an analytic theory in Sec. III. The analytical theory is 

given in detail in Sec. IV. Finally the discussions and conclusions are given in Sec. V.  

II Simulation model and parameters 



The GTC code is a three-dimensional global gyrokinetic particle code using the 

Boozer coordinates for general magnetic field geometry in tokamaks [9]. It invokes a 

nonlinear δf scheme [10] for investigating waves and instabilities, turbulence, 

neoclassical transport and other important physics in tokamaks [11][12]. The GTC 

code has low particle noise due to the use of the f  scheme and a field-aligned 

mesh. The implementations of a gyrokinetic Poisson solver [13] suitable for general 

magnetic field geometry and guiding center equations of motion [14] in magnetic 

coordinates [15] enable the code to efficiently simulate phenomena in many magnetic 

confinement devices using realistic numerical plasma equilibria. The code is truly 

global as it solves the gyrokinetic Poisson equation in real space and has the unique 

capability to simulate a full poloidal cross section using zero radial boundary 

conditions. It has been rigorously benchmarked against the existing analytic theories 

and other gyrokinetic simulations for important issues such as neoclassical transport 

[16] and turbulent transport [13][17]. In particular, the linear frequency and growth 

rate of the ion temperature gradient (ITG) mode and collisionless trapped electron 

mode (CTEM) have been shown to agree well with other codes for the tokamak core 

plasmas [18]. 

In the GTC simulation, the particle distribution is decomposed into an equilibrium 

Maxwellian distribution 0F  and a perturbed distribution function f . The latter one 

for ions, i.e. if , is given by the gyrokinetic equation: 
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0 0b̂ BB is the unit vector along the field line, 0ci i iZ eB m c   is the ion cyclone 

frequency,  2

0ln 2 3 2 lnps s s sn m v T T        with ,s i e represents the ion or 

electron pressure gradient. 

The perturbed electron distribution ef  consists of an adiabatic response 

(0)

0 /e ef e F T   and non-adiabatic response eg  that satisfies the drift kinetic 

equation: 
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The f  method used in the GTC efficiently limits the Monte Carlo noise 

associated with the numerical particles. We denote / ,i i iw f f /e e ew f f , so that 

one can write 
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(4) 

The collisions on the electrons are dominated by the electron-ion collisions, which 

can be represented for simplicity by a pitch angle scattering operator, given by the 

following Monte-Carlo process [19][20]: 

     21 0.5 12 1 .t t t ei n n eit R t             (5) 

where ξ=v
||
/v is the pitch angle of the particle motion, t  is the time step, and R is a 

random number uniformly distributed between 0 and 1.  



For simplicity, we shall assume concircular flux surfaces. The tokamak edge 

parameters are
 0 / 69.2TiR L  , 0 / 69.2TeR L  , 0 69.2nR L  , / 1837i em m  , 

20.85 1.10 / 1.00( / ) ,q r a r a   0.3,   n 26 , where 1/ lnT ss rL T   with 

,s i e  is the scale length of the temperature gradient, 1/ lnn r nL    is the scale 

length of the density gradient, 0/a R   with 0R  the major radius of the tokamak,  

a is the minor radius of the tokamak, and r is the radial coordinate. The toroidal 

magnetic field is defined by 0 / [1 ( / )cos( )]TB B r a   , with   the poloidal angle. 

The mesh for the electromagnetic field perturbations consists of 32 or 64 grids in the 

parallel or toroidal direction, and hundreds of grids in the poloidal direction on each 

flux surface. An unstructured poloidal mesh is used with grid size about i0.5  or 

i1.0  in the radial or poloidal directions to simulate the short 

perpendicular-wavelength modes.  
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Figure 1: Electrostatic potential on the poloidal plane for 
* 0e   

(a) and 
* 0.2e   (b). 

 

 

 

III  Gyrokinetic simulation results for edge DTEM  

Figs. 1(a) and (b) show the electrostatic potential on the poloidal plane for plasma 

without collisions and with collisions, respectively. For the collisional case, the 

effective collisional frequency is * 0.2e  , with  * 3/2

0e Te TeqR v    where 

 2 4 2 2 3

04Te i i e Ten Z e m v  , 0 is the dielectric constant of the vacuum. As can be seen 

in Fig. 1(a), in the collisionless case there is no unstable mode. However, Fig. 1(b) 

indicates that in the collisional case an unstable DTEM mode is excited. The latter can 

be attributed to collisional detrapping of some magnetically trapped electrons. It is 

also found that the most unstable region is not that (around = 0) having the worst 

curvature. This unusual mode structure can be attributed to the strong pressure 



gradient in the pedestal region, where the magnetic drift frequency is much smaller 

than the diamagnetic frequency [21].  

 

(a) 

 (b) 

Figure 2: Linear growth rate (a) and real frequency (b) vs. k s   

for 
* 0.2e  . 

 



 

                               

Figure 3: Linear growth rate vs. 
*

e .  

 

Fig. 2 shows the dependence of the linear growth rate and real frequency on the 

poloidal wavelength. The solid curve is from the analytical theory given in Sec. IV, 

and the open circles are from our GTC simulation. One can see that the GTC results 

are fully consistent with that from the theory and the short-wavelength modes have 

higher growth rates than the long-wavelength modes. In Fig. 3 we see that the growth 

rate increases with the effective collision frequency for * 1.e   Under the given 

parameters, the real frequency of the DTEM is ~ 0.1 ,r s nC L which is roughly 

independent of the collisional frequency and consistent with the theory given in the 

following section. 

 

IV  DTEM theory for tokamak edge 



The theoretical results presented in Figs. 2 and 3 are from a gyrokinetic theory 

applied to the pedestal region [22], where one assumes that *~ ,d  
ei b  . 

For convenience, the particle distribution function is expressed as  
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 is the equilibrium distribution function with ,s i e  for ions and 

electrons respectively, 0s s se F T is the adiabatic part of the perturbed distribution 

function, δH
s
 is the non-adiabatic or kinetic part of the perturbed distribution 

function, k
⊥

 is the wave vector perpendicular to the static magnetic field, and 

Ls csv   is the Larmor radius, and ω
cs

=e
s
B/m

s
c is the gyro-frequency. In the 

long wavelength limit 1ek   , the Poisson equation solved for the electrostatic field 

becomes the quasi-neutrality condition  
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where  0 0 iJ J k   is the zeroth order Bessel function, τ=Te/Ti , and     denotes 

the integration over the velocity space. The collisions, parallel resonance and 

magnetic drifts for the ions can be neglected in the low frequency limit || tik v  . 

Thus δH
i
 has the following solution after simplifying the ion gyrokinetic equation 
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where *e e nk T L c eB   is the electron diamagnetic frequency. 



In tokamaks the electrons can be separated into passing and trapped electrons. 

Accordingly, it is convenient to define a pitch angle variable 

κ≡[(1/2)v
2
−μB

0
(1−ε)]/2εμB

0
 for a large aspect ratio circular tokamak, such that 

0≤κ≤1 and κ≥1 correspond to the trapped and passing electrons, respectively. For the 

low frequency drift waves the response of the passing electrons remains adiabatic. 

However, the kinetic response of the trapped electrons must be calculated and can be 

obtained by averaging the electron drift kinetic equation over their bounce orbit. 

Moreover, in the steep pressure gradient region the magnetic drift can be ignored. For 

the electron-ion collisions, we use a pitch angle scattering or the Lorentz collision 

operator, which can also be bounce averaged. The electron distribution can then be 

obtained by solving the bounce averaged gyrokinetic equation [22]: 
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where δH
etr

 is the kinetic distribution function for the trapped electrons, δH
ep

 is the 

kinetic distribution function for the passing electrons, *( ) 1 eQ v   
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，   is the inverse aspect ratio, ,eff e  
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0 is the dielectric constant of the vacuum. 

Inserting the ion and electron responses in Eqs. (8)-(10) in the quasi-neutrality 

condition, i.e. Eq. (7), and treat the ion as proton , i.e. 1,iZ   one obtains the 

following integral equation for the pedestal DTEM dispersion relation  
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n nI b e  0,1,n   and nI  is the nth order modified Bessel function. Instead of 

using the approximation given in Ref. 21, we can be more precise by numerically 

evaluating the integral on the left hand side of Eq. (11). Choosing the latter Eq. (11) 

then becomes an algebraic equation from which the eigenvalue r ii    can be 

obtained. The results are shown in Fig. 4 for 0.2,  * 0.1,0.5,1,e  1,  1,i e  

0 / 69.2nR L  . We see that for * 0.1e   the longer wavelength modes are stable, and 

as *

e  increases the stable region becomes smaller. Fig. 4 also shows that the growth 

rate increases with ik   while the real frequency decreases with ik  . The unstable 

mode propagates in the electron diamagnetic direction since 0r  . One can see that 

r  does not change much when *

e  increases from 0.1 to 1.0, confirming that the 

real frequency is mainly determined by the collisionless response of the electrons. 



 

(a) 

  

(b) 

Figure 4:  Theoretical linear growth rate and real frequency vs. 

2

θ i
(k ρ )  for different collisional frequencies. 

 

V  Conclusion and discussion 

In this paper we have used the GTC code to simulate the DTEM instability in the 

tokamak edge region. The gyrokinetic DTEM results are for the first time verified by 



an analytical theory for the edge region, which not only demonstrates that the GTC 

code can accurately simulate the DTEM instability, but also provides a useful 

benchmark for the DTEM simulation in the edge region, where the plasma density 

and temperature gradients are high and collisions are the dominant destabilizing factor. 

The analytical model numerically integrates the trapped electron response and gives a 

more accurate DTEM dispersion relation. Our results show that for * 1e  , the 

electron-ion collisions can drive the DTEM instability, and the shorter-wavelength 

modes are easier to excite than the long-wavelength ones. For weak collisions, even 

the long-wavelength modes can be stable. With the linear DTEM fully verified, the 

gyrokinetic simulation using GTC is ready for investigating the interesting nonlinear 

physics in the tokamak pedestal. 
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