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Abstract 10 

We develop from scratch a comprehensive linear stability eigenvalue code based 11 

on finite element method (FEM), namely the Drift Alfvén Energetic Particle Stability 12 

(DAEPS) code, to investigate the most unstable or stable dangerous modes widely 13 

observed in toroidal fusion plasmas. The DAEPS code is dedicated to providing a 14 

thorough understanding of marginally unstable low frequency mode physics in 15 

collisionless plasmas, e.g., shear Alfvén wave (SAW) and drift Alfvén wave (DAW) 16 

physics with energetic particle (EP) effect. DAEPS can calculate the linear frequency 17 

and growth rate for these modes by keeping correct asymptotic behavior in ballooning 18 

space. In this work, we demonstrate that the DAEPS code is able to analyze linear 19 

electromagnetic modes excited by circulating particles, including thermal particle 20 

excited BAE and EP excited TAE which are successfully benchmarked with other codes 21 

and theories, where the finite orbit width is discovered to play an important stabilizing 22 

role which are usually ignored by traditional theory. 23 

 24 

I. Introduction 25 

Tokamak experiments observe that energetic particles (EPs) can resonantly 26 

destabilize various Alfvén eigenmodes (AEs) [1-6]. These Alfvénic fluctuations, which 27 

are marginally unstable or weakly damped in the presence of EP, have been shown to 28 

eject a large number of resonant EPs from the core plasma [1, 3, 5, 7]. These observed 29 
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Alfvénic fluctuations are caused by various instabilities excited by EPs, which consist 30 

of beta-induced Alfvén eigenmode (BAE) [8], toroidicity-induced Alfvén eigenmode 31 

(TAE) [9], energetic particle mode (EPM) [10], reversed shear Alfvén eigenmode 32 

(RSAE) [11], etc. Some of these instabilities are primarily related to the parallel 33 

dynamics of circulating EPs [12], while some are related to the precessional dynamics 34 

of trapped EPs [13]. The EP heat and particle loss caused by these Alfvén eigenmodes 35 

will pose a grand challenge for approaching and sustaining the ignition condition for 36 

future fusion reactors including ITER, as well as a stringent constraint for the lifetime 37 

of the wall material that is bombarded continuously by this high power EP flux [12, 14]. 38 

Therefore, it is important to fully understand the AE physics and develop effective 39 

methods to regulate the AE induced EP transport. 40 

In the last decades, lots of theoretical [9, 15-17] efforts have been made to 41 

understand the AE physics. The linear and nonlinear properties of AEs have also been 42 

widely studied by the numerical simulation using MHD-kinetic hybrid codes [3, 18-22] 43 

and gyrokinetic codes [4, 6, 23, 24]. In the numerical investigation of the Alfvénic 44 

instabilities, the ballooning representation is widely employed by various numerical 45 

codes [7, 25-28]. However, the boundary condition (BC) implemented in these 46 

numerical codes usually set the fluctuating field 0 →   as the extended poloidal 47 

angle of the ballooning representation in the computational boundary [7, 25-28], which 48 

cannot accurately represent the asymptotic behavior of the mode structure for most 49 

interesting cases. The inaccuracy of the asymptotic behavior will cause even larger 50 

errors in calculating frequency and growth rate for marginally unstable or damping 51 

modes, and large deviations from the actual mode structure in the inertial region. Thus, 52 

the unphysical boundary conditions implemented in the numerical codes will lead to 53 

inaccuracy in computing the potential energy and misinterpretation of the AE physics. 54 

The hybrid MHD-kinetic model extensively used to study EP induced Alfvénic 55 

instabilities consists of two approaches, namely perturbative approach and non-56 

perturbative approach [21]. In the perturbative approach, the eigen frequency and the 57 

mode structure are calculated from the MHD equation, which are then used to calculate 58 
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the kinetic response and the kinetic potential energy kW  . This kinetic energy 59 

transferring from the EP to the mode is then used to calculate the linear growth rate. 60 

Another approach, the non-perturbative approach includes the EP contribution through 61 

the plasma pressure or current perturbation, whose mode structure and eigen frequency 62 

differ from those from the MHD equation in many important circumstances. The 63 

perturbative approach cannot be applied to the EPM, since the mode doesn’t exist in 64 

the MHD framework and is very sensitive to the EP source [10, 29]. 65 

In this paper, we develop a non-perturbative eigenvalue code called Drift Alfvén 66 

Energetic Particle Stability code, which uses the finite element method (FEM) to self-67 

consistently solve the eigen frequency and growth rate, as well as the asymptotic 68 

behavior in the inertial region. This code is benchmarked on various instabilities 69 

involving circulating particle dynamics with other codes and theories. The importance 70 

of the finite Larmor radius effect (FLR) and finite orbit width effect (FOW) is 71 

discovered in the code verification process. 72 

The paper is organized as follows. In Section II, we introduce the model equations 73 

of the DAEPS code. In Section III, the numerical method used in DAEPS is discussed 74 

in details. Then we use the DAEPS to study the linear physics of BAE/KBM and 75 

benchmark these physics issues with other codes and theories in Section IV. In Section 76 

V, we calculate the linear properties of the EP excited TAE using DAEPS. In the last 77 

section, we give a brief summary of the current DAEPS development status and discuss 78 

the future work. 79 

 80 

II. DAEPS Model Equations 81 

The model equations for the Drift Alfvén Energetic Particle Stability code (DAEPS 82 

code) are originated from the general fishbone-like dispersion relation (GFLDR) [29, 83 

30]. The theoretical framework of GFLDR can be used to analyze SAW/DAW physics 84 

by adopting the mode structure decomposition (MSD) method [31] and asymptotic 85 

matching between the inertial region/singular layer and the ideal region [15]. The 86 

GFLDR, for a single n  toroidal mode, takes the form of ˆ ˆ
n nf nki s W W  = + , where 87 
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the generalized inertial term n   is the normalized singular layer contribution 88 

including kinetic response, s  is the magnetic shear, ˆ
nfW  and ˆ

nkW  are the fluid 89 

and kinetic contributions of the potential energy, respectively. The dispersion relation 90 

can be formulated in a quadratic form due to the variational nature of GFLDR. A trial 91 

function is needed to calculate the frequency, growth rate, fluid and kinetic potential 92 

energies and their asymptotic behaviors, which needs to be accurate enough in the 93 

asymptotic limit for a precise calculation of the linear eigenvalues. For high toroidal 94 

mode number n , when radial envelope variation can be ignored in the lowest order, 95 

GFLDR becomes the local dispersion relation n nf nki W W  = +  , where 96 

ˆ /n nW W s =  for localized modes. 97 

The mode structure decomposition [31] is valid for general toroidal mode number 98 

n , which introduces the projection operator transforming the fluctuation function f  99 

from real space ( ), ,f r     to the mode structure decomposition (MSD) space 100 

( )ˆ ,nf r  , i.e., ( ) ( )ˆ: , , ,Bn nf r f r   , which takes the form of : 101 

 ( ) ( ) ( ) ,, ,
i m nq

m

in im

Bnf r e e r f d
    

−−=   , (1) 102 

where Bn  is the function mapping between the two spaces. For high n  mode with 103 

moderate to high magnetic shear, the unstable modes are localized around the mode 104 

rational surface, the envelope variation is weak, and the MSD can be reduced to the 105 

ballooning representation [31]: 106 

 ( ) ( ) ( ) ( ) 0

,

, ,,
i m nqin im

n Bn n

n m

f r e rA dr e f
    

−−=   , (2) 107 

where the fluctuation function f  shows a two-scale feature in the radial structure with 108 

0nf   varying in the micro-scale ( )
1

0 nq
−

 =    and macro-scale ( )O a  , and the 109 

envelope function ( )nA r   varying in the meso-scale ( )
1/2

0a   which can be further 110 

described by an eikonal ansatz ( ) ( )~ expn kA r i nq r dr 
  . 111 
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The DAEPS model equations assume the gyrokinetic ordering and solve the 112 

gyrokinetic-Maxwell system by singling out essential kinetic physics. The tearing mode 113 

physics is ignored, so the perturbed parallel vector potential A  can be described by 114 

a magnetic scalar potential    with t A c  = −   . Using the s-α equilibrium 115 

model, the following vorticity equation is solved in the DAEPS model [32]: 116 

( )2 2
*

02 2 2 2 2 2 2

41 j

j

pi

dj

jA v

qk k
B g J K

B k v k q R k c  

   
    ⊥ ⊥

− 
  + + = 
 

 , (3) 117 

where the left hand side (LHS) is the fluid contribution, consisting of field line bending, 118 

inertial and ballooning interchange, and the right hand side (RHS) is the kinetic 119 

compression, which could come from either energetic particles or thermal particle.120 

2Rq = −  with 28 /P B =  is the dimensionless pressure gradient that provides 121 

instability drive, 
nq

k
r

 =  , 
* pi

c i

i

i

P
m




= 


k b
  is the ion diamagnetic frequency, 122 

( )2 /dj cjB v =   + b κ  is the drift frequency for the particle species j , q  is the 123 

safety factor, the jq  is the charge for the particle species j , and ( ) 3

v
d=  v  124 

denotes integration over the velocity space, 
4

A

B
v

nm
=   is the Alfvén velocity, 125 

( )0 0 jJ J k ⊥=  is the Bessel function of the first kind of zeroth order, / cj jv ⊥=   is 126 

the Larmor radius with cj   the cyclotron frequency, 
2 2 2k k⊥ ⊥=   with 127 

( )
22 1 sins   ⊥ + −=  and ( )cos sin sing s    = − −  , 

1

B qR
 =  = 

B
 , and 128 

  is the extended poloidal angle in the cover space of the ballooning representation. 129 

The fluid contribution of energetic particles is assumed negligible. The ideal MHD 130 

approximation 
1 0tE c A  − − = =  is used for convenience to give  = , 131 

which is valid for linear physics of BAE and EP excited TAE [9, 32], and thus the quasi-132 

neutrality condition is no longer necessary. For most relevant cases we consider high 133 

n  modes, thus in the ballooning representation the vorticity equation of Eq. (3) can be 134 
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written explicitly as [32, 34]: 135 

 
( )

( )
2 2

*2 2

02 2

4p j

j j

j

i

dj

A v

q
k k

q R
g J K

c
k 

   
      


⊥ ⊥ ⊥

−
+ =+   . (4) 136 

In Eq. (4), A   is the Alfvén frequency with ( )
2

2 2

0 1 4 cosA
A A

v

qR
  

 
= − =
 

  for a 137 

large aspect ratio with circular flux surface tokamak with /r R= , where 0A  is the 138 

Alfvén frequency on the magnetic axis that determines the basic characteristic time 139 

scale for Eq. (4). 140 

The gyrocenter distribution function jK   can be solved through the linearized 141 

collisionless electromagnetic gyrokinetic equation: 142 

 ( )0 0

j

j

d

j

j

dj j

j

q
i i

v
i K Q

q
F J k

mR



    


⊥ +

 
− = 

 
 , (5) 143 

where ( )0 * 0
ˆ

j E j jQF F = +  is the free energy provided by the phase space gradient 144 

of the equilibrium distribution function 0 jF , with 21

2
E v= and 1

*
ˆ

j cj −=   k b . 145 

The asymptotic behavior of   as  →  , which is critical for calculating the 146 

eigen frequency and growth rate and identifying whether a mode is physical or spurious, 147 

is determined by the outgoing wave boundary condition with causality constraints. In 148 

order to properly handle the asymptotic behavior, the vorticity equation should be 149 

written as the Schrödinger-like form: 150 

 
( )

( )
2 2

*2

02 2 2

4 j

j

pi

dj

jA v

q q R
V J K

k c




   
  

 ⊥

 −
 + +  = 
  

  , (6) 151 

where ( ) ( )
22 4cos cosV s      − −

⊥ ⊥= − −   is the effective potential well, and 152 

 ⊥ =  is the perturbed magnetic scalar potential, whose asymptotic behavior can 153 

be derived by taking the limit  →  . Ignoring the variation of magnetic field along 154 

the field line, the asymptotic behavior will be described by a wave equation: 155 

 ( )2 2 0 +  = . (7) 156 

Employing the outgoing wave boundary condition, the asymptotic behavior of the 157 
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perturbed magnetic scalar potential takes the form of: 158 

 lim
i

e






→
 =  , (8) 159 

where   is the inertial term in the GFLDR [15, 29, 30], which contains the kinetic 160 

contribution. The continuous spectrum corresponds to purely real   , while the 161 

discrete spectrum corresponds to purely imaginary  [32]. 162 

 Considering the periodic variation in A  along the field line due to the periodicity 163 

of magnetic field, the asymptotic behavior of   can be expressed in the following 164 

form using the Floquet theory [30, 35]: 165 

 ( )lim
i

Pe
 




→
 = ,  (9) 166 

where ( )P    is a 2π-periodic function. The causality constraint requires Re 0   167 

for the outgoing wave boundary condition. 168 

 The RHS of Eq. (6) involves the integration of perturbed gyrocenter distribution 169 

function jK , which can be solved from Eq. (5). Considering only the circulating 170 

particle response, the gyrokinetic equation can be integrated directly in the ballooning 171 

space [26-28] as: 172 

 

( ) ( )
( )

( )
( ) ( )

( )

ˆ  

0 0

ˆ, , , exp sign Im

ˆ

j

j

x dj

dj

j

j

x
J dx

x

y
K E i qR dy

v

q xqR
i QF
m v



 

 
    




 

− 

⊥

 − +
 
  




=

−

 
 , (10) 173 

where ˆ
v

v
 =   is the direction of parallel velocity, 0B

E


 =   is the velocity pitch 174 

angle, and the signum function of the imaginary part of   is the causality constraint 175 

to avoid the integral divergence. Hence, the kinetic compression term (KC) can be 176 

written as: 177 
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( )

( )

( )( )
( )

( )
( )

2 2

1

02 2

2 2
1

0 02 2 0 0

0

KC

2

exp sign Im

4

4

dj

v

j

j

j j

j

dj

j

x dj dj

q

k

q
J

k

x

q R
J K

c

q R qE qR
dE d dx i QF

c mv v

i x dy qR x
v

J
x








  

  


 

  
 



−

⊥

 

−
⊥

⊥

 − +
 −  

 

=

=



  



. (11) 178 

 Thus, the DAEPS model equation becomes an integral-differential equation that 179 

manifests itself a nonlinear eigenvalue problem. Appropriate numerical method needs 180 

to be found to solve this equation, as shown in the next section. 181 

 182 

III. Numerical Method 183 

The DAEPS code uses the finite element method with cubic B-Spline to solve Eq. 184 

(6) with special elements near boundaries [36]. For total N  grid points in the extended 185 

poloidal angle domain with equal grid step h  , the finite element basis function 186 

( ), 2 2n n N  − , lies in region ( ) ( )2 2n h x n h−   + , and takes the form of: 187 

 
x

n n
h


 

= − 
 

 , (12) 188 

where ( )x  is a piecewise function: 189 

 ( )

3
2

3
2

3
2

3
2

4
2 2

3 6

2
1

3 2

2
0

3 2

4

6

0

1

2 1 2
3

1
x

x x

x
x

x
x

x
x

x

x

x x

x

x




+ + + −




− − −

 − +


 − + −  


  −

 

=

 

. (13) 190 

For the special elements near the left boundary Lx x=  , the boundary elements 191 

1− , 0  and 1  take the form of: 192 



9 
 

 

( )

( )

( )

2 3

2 3

2

2 3

2 3

2 3

3

1 1 3 3 0

3 7
0

2 12
0

2 1 1
1

3 2 12

1 11
0

2 36

1 3 7
1 1

2 2 36

3 3 1 1
2

2 2 2 1

1

1

2

1

8

2

3

L

L

L

hy x y y y

y y y

hy x

y y y

y y

y

y

y

y

hy x y y y

y

y

yy y

 

 

 

 

− + = − + −


− +

+ = 
 − + −

 

 




−




+ = − + − +



− + −
 . (14) 193 

As shown in the Fig. 1, these special elements near the boundaries have their 194 

special properties, where 1−  has non-zero value at the boundary, while 1−  and 195 

0  have non-zero derivatives at the left boundary. These properties particularly favor 196 

Dirichlet and Neumann boundary condition. 197 

 198 

Figure 1: The B-Spline finite element with 6N =  grid within the interval [ , ]L Rx x . 199 

The perturbed magnetic scalar potential in Eq. (6) can be expressed by a linear 200 

combination of the finite elements n , i.e., ( ) ( )
1

1

N

n

n

a n 
+

=−

 = . Hence, the weak 201 

form of Eq. (6) takes the form of: 202 

 

( )

( )
( )

1 1
†

1 1

*

2

KC
N N

n n

n n

pi

A

a m n m n m n

m n

a

V



   

  




+

−

+ +

=− =−

  

−
+

= − +



+ 



 
 , (15) 203 

where the computational domain is taken as  , − + , and the boundary condition term 204 
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m n  , considering the Neumann boundary condition | i  →  =    , can be 205 

transformed to: 206 

 ( ) ( )m nm n i m n


 
 +

−
−+=   +   . (16) 207 

Such a boundary condition is essentially an absorbing boundary condition for 208 

outgoing wave with no reflection for given asymptotic behavior, which is important for 209 

the causality constraint. The self-adjointness of the LHS of Eq. (6) requires that the 210 

eigenfunctions appear in complex conjugate pairs in the ideal MHD limit, where the 211 

eigenmode structure   and its complex conjugate 
  are both eigenfunctions with 212 

the same eigenvalue, and with opposite signs for the real part of the asymptotic 213 

parameter   , which denote two opposite propagation directions for the wave. The 214 

causality constraint Re 0    suggests that there should exist only one physical 215 

solution in each pair of solutions [29]. However, with improper boundary condition that 216 

reflects the outgoing wave backwards, the calculated mode structure    is 217 

superimposed by the unphysical reflected mode 
 , which leads to the inaccuracy in 218 

the eigenfunction and the corresponding eigenvalue. 219 

The FEM weak form of Eq. (6), as shown in Eq. (15), is closely related to the 220 

GFLDR framework [29, 30]. By multiplying the complex conjugate of FEM coefficient 221 

†

na  and performing the summation over the FEM space, the left hand side (LHS) of Eq. 222 

(15) is the local kinetic contribution to the potential energy kW . The non-boundary 223 

terms in the right hand side (RHS) are the local fluid contribution to the potential energy 224 

fW , and the boundary term is the inertial term in GFLDR. Since the computational 225 

domain should include the ideal region 1  , the boundary condition Eq. (16) at 226 

computational boundary   is essentially performing the asymptotic matching for   227 

from the ideal region to the inertial region, i.e., † † 0

0| 2|ID ID IN IN i 

+ +

− −     ==   , 228 

which suggests that the computational domain should be large enough to cover the 229 

inertial region. Using the DAEPS model, both fluid and kinetic contributions to the 230 

potential energy and singular layer can be accurately calculated, and the solution to the 231 
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FEM weak form of DAEPS equation can automatically satisfy the GFLDR equation. 232 

Using the FEM, the matrix form of the vorticity equation Eq. (15) becomes a nonlinear 233 

eigenvalue equation: ( ), 0A B C  + + =x x x  . Here an iterative algorithm is 234 

designed to solve the eigen frequency   and the asymptotic behavior of the mode 235 

structure  , where   is calculated from the eigenvalue of the matrix, the asymptotic 236 

behavior is fitted from the eigenvector of the matrix, and both of them are reserved for 237 

next iteration until the convergence is achieved. 238 

We note that the kinetic compression term KC, on the LHS of Eq. (15), involves a 239 

multidimensional integration: 240 

 

( )

( )

( )
( )

( )
( )

( )( )

1

1

2 21 1

02 2 0 0
1

0 0

2
KC

exp sign Im

4N
dj

n

n

dj

j n

x dj

N
j

n

j

j

q
a m n J

k

x
m J a n x

q R E
d dE d dx

c v

q qR
i QF
m v

i x dy qR

x

v





  
 

 






 
 

+   +

=
− −

− ⊥

⊥

−=



 − +
 −



=


 

 



   

, (17) 241 

where we use the numerical method of global h-adaptive multidimensional integration 242 

over hypercube [37, 38] to calculate the KC term, and piecewise Gauss-Legendre 243 

quadrature to calculate the FEM integral. 244 

 245 

IV. BAE/KBM with Kinetic Thermal Ions 246 

Beta-induced Alfvén eigenmode (BAE) exists in the finite pressure induced gap for 247 

the Alfvén continuum, which is caused by the coupling between SAW and sound wave 248 

(SW) induced by plasma compressibility [8, 12]. BAE can be excited by the plasma 249 

compressibility from either thermal ions or energetic particles via wave-particle 250 

resonance [32]. 251 

For simplicity, here we only consider the BAE excited by the circulating thermal 252 

particles. Since the BAE is a 0k    mode, the mode structure of BAE in the 253 

ballooning representation varies slowly with the extended poloidal angle    in the 254 

inertial region, which means the real part of asymptotic behavior Re  is small [6]. 255 
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Hence BAE is a long wavelength mode, ~ q   , the ideal MHD assumption of 256 

neglecting parallel electric field holds, 0E  , [6], since BAE propagates in the ion 257 

diamagnetic direction [32]. The KC term in Eq. (17) can be simplified using the drift 258 

center transformation. By expanding the pull-back operator ( )exp cosdjik  ⊥−  to the 259 

lowest order [10, 34] and performing scale separation between the fast variation 260 

( )0  ~ 1O  and slow variation 1   1 , the reduced kinetic compression term takes the 261 

form of: 262 

 
( )2 2

2 2 2

0 0 12 2 2 2 2

4 1 cos
KC

4 2j j

j

j tj

tj v

q
QF J

q q R
J

ck m

  


  ⊥

− 


−
 , (18) 263 

where tj

v

qR
 =  is the transit frequency, ( )1 1 djJ J k ⊥=  is the Bessel function of the 264 

first kind of first order, and 
dj

dj

tjk





=  is the drift-orbit width with /dj dj g = . The 265 

term ( )
1

2 2

tj 
−

−  is identified as the transit resonant interaction between particle and 266 

wave. Ignoring the FOW and FLR effects, the kinetic compression term in Eq. (11) can 267 

also be further simplified by assuming the aforementioned scale separation: 268 

 

2 2

2 2

02 2 2 2
KC

4
sin

j j

j

jj

j d

t v

q
QF

q q R

ck m

 

 

=  
−

. (19) 269 

It is known that the BAE branch can be coupled with kinetic ballooning mode (KBM) 270 

branch in some parameter regime [32]. Here for the code benchmark purpose, we first 271 

choose the KBM instability, which is also a small k  mode, excited by only thermal 272 

ions. Fig. 2(a) shows the comparison of the real frequency and growth rate between 273 

DAEPS and the initial value linear gyrokinetic PIC code AWECS [25], with the 274 

prescribed plasma parameters 1.2q = , magnetic shear 0.4s = , / 0.175ni niL R= = , 275 

with lnni r iL n= − , 
ln

2
ln

i
i

i

d T

d n
 = = .In Fig 2(a), the solid line and dashed line show 276 

the eigen frequency and growth rate vs. the dimensionless pressure gradient   277 
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respectively, the blue squares are from DAEPS with reduced KC, the red triangles are 278 

from DAEPS with complete KC, and the black circles are from the AWECS result. The 279 

DAEPS result is fully consistent with the AWECS result. In addition, we note that the 280 

difference in the linear frequency, growth rate and asymptotic behavior is less than 10% 281 

between the reduced KC and complete KC, as shown by Fig. 2(a) & (b). The small 282 

differences between DAEPS and AWECS can be attributed to the ion polarization and 283 

parallel electric field ignored in the DAEPS model for simplicity. The comparison of 284 

the KBM eigenvalue and asymptotic behavior suggests that using the reduced form of 285 

KC in the DAEPS code can accelerate the calculation of the eigenvalue and asymptotic 286 

behavior without losing accuracy to a speed dozens of times faster than using the 287 

complete KC term by substantially reducing numerical integration time. 288 

 289 

(a) 290 
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 291 

(b) 292 

Figure 2: Comparison of linear dispersion and eigenmode asymptotic behavior for KBM between 293 

the DAEPS results with complete KC term (cKC) and reduced KC term (rKC).(a) real frequency 294 

r  and growth rate   vs  ; (b) asymptotic behavior   vs  . 295 

 296 

Next we show the benchmark for the BAE instability. According to the GFLDR 297 

theory, the BAE dispersion relation, after assuming *~~ ti pi A    , is given by 298 

the following equation [32]: 299 

( )
( )

( )

( )

1/2
2

* 2

* *2 2

/

/

pi Titi
ni Ti

A A Ti Ti Ti

q
N

F G
D

      
  

     

    
− −

 − 
+ − =  

  
   

    
, (20) 300 

where 
2 1i

Ti

i

T

m qR
 =  , and the functions, ( )F x  , ( )G x  , ( )N x   and ( )D x   are 301 

introduced by Ref. [32]: 302 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2 2 4* *

2 4* *

2 4 2

4
4 2 6 22

1 1 1
1

2 2 4

1 1 1 1
1 1

2 4

3 1

2 2

3

2 4

ni Ti

ni Ti

N x x x Z x x x x Z x

D x Z x x x x Z x
x

F x x x x x Z x

x
G x x x x xx

 

 

 

  

          
= − + + − + + +          

          

       
= + + − − + + +        

        

   
= + + + +   

   

= + ++ + + + ( )Z x
 
 
  . (21) 303 

According to the theory, there exists a critical value for i , below which the KBM 304 

branch is the most unstable branch, and above which the coupled BAE and KBM branch 305 

is the most unstable branch. In order to better estimate the value of   in the theory, 306 

the asymptotic behavior value   calculated by the DAEPS code is substituted back 307 

into the Eq. (20) to compute the linear frequency and growth rate. An example is shown 308 

in Fig. 3 with the plasma parameters 0.01i = , 1.5q = , *ni ti = , and 0.5i   is 309 

above the critical value, which ensures that the mode calculated by DAEPS stays in the 310 

coupled BAE/KBM branch, where the red triangles and diamonds are from the DAEPS 311 

code with complete KC term (cKC) and reduced KC term (rKC) respectively, and the 312 

blue circles and squares are from theory given by Eq. (20) with complete KC term (cKC) 313 

and reduced KC term (rKC) respectively. As shown in Fig. 3(a), the increasing trend of 314 

eigen frequency and growth rate with increasing i  calculated by the DAEPS code is 315 

qualitatively consistent with the theory for both complete KC and reduced KC case. 316 

The notable shift between DAEPS and theory in Fig. 3(a) is presumably caused by the 317 

FOW and FLR effects, which are treated as higher order and neglected in the 318 

conventional theory [32]. To verify this conjecture, we compare the DAEPS results 319 

using the reduced KC ignoring the FLR and FOW effects in Eq. (19) with the 320 

conventional theory in Eq. (20) on the BAE/KBM instability. As shown in Fig. 3(b), 321 

the difference in the eigen frequency, growth rate and asymptotic behavior is negligibly 322 

small between DAEPS and theory, and the discrepancy is actually less than 10% 323 

between DAEPS result using reduced KC term and using complete KC term, which 324 

proves that the large discrepancy between DAEPS and theory in Fig. 3(a) is due to the 325 
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FOW and FLR effects and also verifies the validity of using the reduced KC term in the 326 

DAEPS code to accelerate computation. The comparisons in Figs. 3(a) & (b) also 327 

demonstrate the stabilizing nature of the FLR and FOW effects in the BAE excitation. 328 

The conventional theory overestimates the BAE instability threshold and gives a much 329 

larger linear grow rate close to marginal stability, which would affect the nonlinear 330 

physics profoundly, especially comparing to experiments. 331 

 332 

 333 

(a)                                 (b) 334 

Figure 3: Comparison of real frequency r  and growth rate   from the DAEPS code and theory 335 

for various i : (a) eigenvalue comparison with FLR and FOW effects; (b) eigenvalue comparison 336 

without FLR and FOW effects. 337 

 338 

The asymptotic behavior is crucial to solve the eigen frequency and growth rate 339 

when the mode structure in the inertial region is more important than in the ideal region, 340 

which often occurs for the marginally unstable or damping modes, as well as for the 341 

continuous spectrum located only in the inertial region, such as the Alfvén continuous 342 

spectrum to be introduced in the next section. Since BAE/KBM mode is strongly MHD 343 

unstable, the asymptotic behavior is not crucial for calculating the eigen frequency and 344 

growth rate of BAE/KBM. However, the computation cost is substantially reduced with 345 

the proper boundary condition since much narrower computational domain is needed, 346 

as is demonstrated by following. Here we use the BAE/KBM typical parameters with 347 
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0.7i =  in the preceding study to perform a comparison between the cases with and 348 

without the proper boundary condition for the correct asymptotic behavior, where the 349 

case without the proper boundary condition is calculated by using the free boundary 350 

condition 0  =  . Fig. 4(a) shows the comparison of the mode structures with 351 

different boundary conditions, where the red solid line and the blue dashed line are the 352 

real and imaginary parts of the mode structure with the proper BC, while the red circles 353 

and blue diamonds are the real and imaginary parts of the mode structure without the 354 

proper BC. As is shown in the Fig. 4(a), the difference between these two different BC 355 

cases becomes significant in the inertial region, where the logarithm of the mode 356 

structure should be described by the linear relationship log consti  =  +  as is 357 

required by the correct asymptotic behavior. A large discrepancy occurs in the inertial 358 

region for the logarithm of the mode structure without the proper BC when fitting with 359 

the linear relation, as shown in Figs. 4(b) & (c), where the black dotted line is the linear 360 

fitting of the logarithm of the mode structure with the proper BC; the red solid line and 361 

red circles are the real part of the logarithm of mode structure with and without the 362 

proper BC, respectively; and blue dashed line and blue diamonds are the imaginary part 363 

of the logarithm of mode structure with and without the proper BC, respectively. 364 

 365 

(a)                                 (b) 366 
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 367 

(c)                                (d) 368 

Figure 4: Comparison of the mode structures with 0.7i =  for the DAEPS results with (w/) and 369 

without (w/o) the proper boundary condition (BC): (a) mode structure for real and imaginary parts 370 

of   in linear scale; (b) real part of the logarithm of mode structure; (c) real part of the logarithm 371 

of mode structure, where the black dotted line is a linear fitting of the logarithm of the mode structure 372 

with the proper BC; (d) relative error of the asymptotic behavior in logarithmic scale. 373 

 374 

The relative error of the asymptotic behavior is shown in Fig. 4(d) for the DAEPS 375 

results with and without the proper BC, denoted by the red solid line and the blue dashed 376 

line, respectively. The error of the asymptotic behavior at the boundary can propagate 377 

towards the ideal region, as shown in the Fig. 4(d), which could lead to a significant 378 

error in the calculated eigenvalue when the error propagated from the inertial region is 379 

large enough to affect the mode structure in the ideal region. Since the error of the 380 

asymptotic behavior decays exponentially as it propagates towards the ideal region, we 381 

can set the computational domain wide enough to eliminate the inaccuracy in the ideal 382 

region, which requires a fair amount of extra computing resources for the case without 383 

the proper BC. 384 

In short, it is important to implement the correct asymptotic behavior for the 385 

following reasons: (1) the asymptotic behavior is crucial for calculating marginally 386 

unstable or damping modes when the mode structure in the inertial region is more 387 

important than that in the ideal region; (2) the computational domain needs only to 388 

cover a relatively small part of the inertial region to save computing resources; (3) the 389 
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solution to the DAEPS equation can automatically satisfy the GFLDR equation when 390 

including the correct asymptotic behavior, which can help us more easily identify the 391 

essential EP and Alfvénic physics. 392 

 393 

V. Circulating Energetic Particle Excited TAE 394 

The poloidal symmetry breaking of the equilibrium magnetic field, due to its non-395 

uniformity in a flux surface, enables different poloidal harmonics to be coupled together, 396 

which can produce not only the frequency gaps in the SAW continuous spectrum but 397 

also discrete Alfvén eigenmodes which are localized in the forbidden band. The 398 

toroidicity-induced Alfvén eigenmode (TAE) is the discrete mode located inside the 399 

TAE gap. Since the coupling to the continuum can be ignored, the TAE is marginally 400 

stable and can be easily destabilized by EPs through wave-particle resonance [1, 39]. It 401 

is shown that TAE can cause resonant alpha particle loss even with low TAE amplitude 402 

[1, 14]. Therefore, the linear stability study of EP excited TAE is very important for the 403 

steady state operation of burning plasmas. 404 

The SAW continuous spectrum is important because it determines the coupling of 405 

EP excited Alfvénic fluctuations to the continuous spectrum with continuum damping 406 

through phase mixing and mode structure localizations [39]. As is mentioned earlier, 407 

DAEPS can calculate marginally unstable and damping modes by incorporating the 408 

correct asymptotic behavior. As an application of this feature, we demonstrate here that 409 

the DAEPS code can also calculate the Alfvén continuous spectrum by ignoring the KC 410 

term and using the Floquet theory. Given toroidal and poloidal mode numbers ( ),n m , 411 

the frequency of the Alfvén continuum at flux surface r   must satisfy 412 

( ) ( )
22 , r nq r m   = −   . We have designed an algorithm to calculate the Floquet 413 

theory   for the Alfvén continuum by linear fitting the logarithm of mode structure at 414 

the sample points ( )0log 2n  + , where the computational domain should be inside 415 

the inertial region, 1 . The Alfvén continuous spectrum calculated by DAEPS is 416 

compared with AWC [40], which is an ideal MHD global eigenvalue code, as shown in 417 
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Fig. 5(a) with concentric circular flux surfaces, inverse aspect ratio 0.25
a

R
= =  , 418 

toroidal mode number 5n = , and a parabolic q profile 

2

1
r

q
a

 
= +  

 
, where a  is the 419 

minor radius. The relative error between the DAEPS and AWC result is less than 0.1%. 420 

An example of the local dispersion curve of Alfvén continuous spectrum is shown in 421 

Fig. 5(b). After the calculation of the local dispersion curve on the each flux surface, 422 

the frequency of global Alfvén continuous spectrum of different toroidal and poloidal 423 

mode numbers on the given flux surface can be calculated using the frequency at given 424 

  of the same local dispersion curve. 425 

 426 

(a)                                 (b) 427 

Figure 5: Alfvén continuous spectrum calculated by DAEPS, where the solid lines are AWC result, 428 

red circles are DAEPS result. (a) Comparison of global Alfvén continuous spectrum with AWC 429 

result. (b) Local dispersion curve of Floquet theory   at 0.4r a=  or 1.16q =  surface. 430 

 431 

TAEs are marginally stable MHD modes, which can be easily excited by EPs, 432 

especially by circulating EPs. Therefore, the DAEPS code is first developed to calculate 433 

the TAE mode excited by the circulating energetic particles, assuming an ideal MHD 434 

background plasma and the KC term contributed by EP only. Fig. 6 shows the TAE 435 

numerical result by DAEPS with the prescribed plasma parameters 0.2s = , 1.2q = , 436 

0.15=  , 0.2E =  , 
0

0.2nE
nE

L

R
=  , 0.4Ek =  , / 0.5tE Av v =   and 0 =   which 437 
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keeps the TAE frequency above the lower Alfvén continuum. For the benchmark 438 

purpose, the equilibrium energetic particle distribution is set as Maxwellian. As shown 439 

in Fig. 6(a), the TAE growth rate almost increases with the energetic particle pressure 440 

E  linearly, which is consistent with the previous theory [9], where the ratio between 441 

the growth rate and frequency for circulating EP excited TAE is provided by [16]: 442 

 ( )
2

22 3
2

02

4 1

2 3 3

A
E A

v

E

v vq
m v QF v

R
vv

B
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 


⊥

   
= + − + −   

  

 
 
 

, (22) 443 

where   is the Dirac delta function, which shows the resonant contribution from the 444 

/ 3Av v=  and Av v=  resonance, where the FLR and FOW effects are ignored in the 445 

theory. To compare DAEPS results with Eq. (22) in a more rigorous way, the FLR and 446 

FOW effects are ignored in the DAEPS equation. By substituting the frequency 447 

calculated by DAEPS into Eq. (22), we obtain the theoretical growth rate, which is then 448 

compared to the growth rate from DAEPS, as shown in Fig. 6(b). The relative difference 449 

in the growth rate between DAEPS and the theory is less than 1%. In addition, the 450 

growth rate without FLR and FOW effects in Fig. 6(b) is 6 times larger than the growth 451 

rate with FLR and FOW effects in Fig. 6(a), which suggests the stabilizing nature of 452 

the FLR and FOW effects in the TAE excitation. The poloidal mode coupling caused 453 

by FLR and FOW effect could have either stabilizing effect by suppressing the wave-454 

particle resonance, or the destabilizing effect by involving more energetic particles in 455 

the wave-particle resonance [9]. In the parameter regime of this DAEPS calculation, 456 

the FLR and FOW effect is dominated by stabilization, because the stabilizing effect 457 

caused by the FLR and FOW due to the / 3Av v=  resonance is more important than 458 

the destabilizing effect due to the / 5Av v=  resonance as the EP distribution function 459 

is set as a local Maxwellian with EP thermal velocity / 2tE Av v=  in this case. 460 
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 461 

(a)462 

 463 

(b) 464 

Figure 6: The eigen frequency of EP induced TAE varies with E  (a) The TAE frequency and 465 

growth rate from DAEPS with FOW and FLR effects. (b) The TAE frequency and growth rate from 466 

DAEPS and theory without FOW and FLR effects. 467 
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 468 

VI. Conclusion and Discussion 469 

 In this paper, we developed a non-perturbative eigenvalue code DAEPS for the 470 

drift Alfvén energetic particle stability, and benchmarked the code with theory and other 471 

numerical codes on the instabilities involving circulating particle dynamics and MHD 472 

behavior, e.g., KBM, BAE and EP induced TAE, and Alfvén continuum. In the DAEPS 473 

model equations, we take the ideal MHD approximation for the background plasma, 474 

and keep the EP contribution in the kinetic compression (KC). We discussed in detail 475 

the numerical method employed in DAEPS, which uses cubic B-spline finite elements 476 

with special treatment near the computational boundary to deal with the Dirichlet or 477 

Neumann boundary condition as required by physics. We implemented a reduced KC 478 

term in the DAEPS code to accelerate the calculation of the eigen frequency, growth 479 

rate and asymptotic behavior for BAE/KBM dozens of times faster than using the 480 

complete KC term without losing accuracy. This makes DAEPS a practically useful 481 

toolkit for the experimentalists to study Alfvén instabilities with kinetic effects. The 482 

DAEPS result suggests that the effects of FOW and FLR can stabilize the BAE and 483 

TAE modes by suppressing the wave-particle resonance. In the DAEPS model 484 

equations, the asymptotic behavior of the mode structure is properly handled. Thus the 485 

DAEPS code can calculate marginally unstable or damping modes as well as continuous 486 

spectrum, which is absent from other codes; for unstable modes, the requirement of 487 

computational domain is reduced to save computational resources substantially. 488 

Furthermore, the DAEPS model equations satisfy the GFLDR equation automatically, 489 

which is capable of locating the essential Alfvénic physics and EP behaviors. The 490 

trapped particle contribution is ignored temporarily in this paper for simplicity and will 491 

be included in a future paper. In addition, the experimental equilibrium and profiles will 492 

be included in the DAEPS code as well. 493 

 494 
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