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The set of equations describing fully nonlinear evolution of a single toroidal Alfvén eigenmode
are derived, including both zero frequency zonal structure (ZFZS) generation and wave-particle
phase space nonlinearity. The simplified case neglecting wave-particle phase space nonlinearity
is then investigated to focus on different roles of energetic particles and bulk plasmas on ZFZS
generation. It is shown that energetic particles and bulk plasma play dominant roles in ZFZS
generation in different stages, and the corresponding nonlinear processes are qualitatively different.
Several properties of ZFZS generation, e.g., fine- vs. meso-scale, forced driven vs. spontaneous
excitation, are clarified by the present analysis.

I. INTRODUCTION

Shear Alfvén waves (SAW) are expected to play an important role in future burning plasmas with energetic particle
(EP) population such as fusion-αs significantly contributing to the overall plasma energy density [1]. With frequency
comparable to the characteristic frequencies of EPs, and group velocities mainly along magnetic field lines, SAWs could
be driven unstable by EPs [2–5] via resonant wave-particle interactions; leading to EP transport and degradation of
overall confinement, as reviewed in Ref. [1]. As a consequence, understanding the nonlinear dynamics and saturation
spectrum of SAWs is of crucial importance for the understanding of future burning plasmas behavior.
There are two routes for the nonlinear saturation of Alfvén modes, i.e., nonlinear wave-particle and nonlinear wave-

wave interactions [6]. Wave-particle phase space nonlinearity [7], e.g., wave-particle trapping, describes the nonlinear
distortion of the EP distribution function; and leads to SAW saturation as the wave-particle trapping frequency,
proportional to square root of the mode amplitude, is comparable with linear growth rate [8–11]. On the other
hand, wave-wave coupling accounts for the transfer of wave energy from unstable modes to the stable part of the
fluctuation spectrum [12, 13]. Thus, to correctly investigate the saturation of SAW, both wave-particle and wave-
wave nonlinearities must be considered on the same footing, with the intrinsic nonuniformity associated with toroidal
geometry properly accounted for [6].
Distinct by their different interactions with SAW continuum, there are two kinds of EP driven Alfvénic modes in

toroidal devices, i.e., EP continuum modes (EPM) and discrete Alfvén eigenmodes (AE). We note that, the general
equations for studying EPM nonlinear physics [5], including both zero frequency zonal structure (ZFZS) and phase
space zonal structure (PSZS) generation, are presented in Ref. [7]; though only PSZS are treated to give a clearer
picture and discuss numerical simulations [14]. Meanwhile, toroidal Alfvén eigenmode (TAE) [15, 16], excited inside
the toroidicity-induced SAW continuum gap to minimize continuum damping, is one of most dangerous candidates for
effectively scattering EPs. In this work, we take TAE as an example, and derive the set of fully nonlinear equations
for the saturation of a single-n TAE, including both ZFZS generation [13, 17, 18], and EP phase space nonlinearity;
while spectral transfers by nonlinear scattering of the TAE spectrum are not considered here [12]. Thus, the present
theoretical framework provides a “minimum” problem for self-consistent TAE studies.
Nonlinear excitation of ZFZS by SAWs in not favourable due to the properties of “pure Alfvénic state”; that is,

in uniform plasmas under ideal MHD condition the two dominant nonlinear terms, i.e., Maxwell (MX) and Reynolds
stresses (RS), cancel so that a finite amplitude SAW, satisfying ω = ±k∥VA, can exist for a long time without being
affected by nonlinear processes. By assumption, it is readily noted that the pure Alfvénic state can be broken by,
e.g., finite compressibility [19], violation of ideal MHD constraint [20] and/or inhomogeneity/geometry [13, 21]. In
the case of EP driven TAE considered here, we show that ZFZS generation can be due to the breaking of Alfvénic
state by EPs [22] and/or toroidicity [13].
ZFZS generation by TAE has been studied in several works. Numerical analyses of nonlinear dynamics of EP

driven TAE are carried out by both hybrid code [23] and particle-in-cell code [24, 25] simulations, and found that
zonal flow (ZF) is excited via essentially thresholdless forced driven process, with electrostatic ZF dominating over
electromagnetic zonal current(ZC) and the ZF growth rate being twice the TAE growth rate [23]. On the other hand,
Chen et al [13] investigated the nonlinear excitation of ZFZS by TAE with a prescribed amplitude, and found that
finite amplitude TAE can excite ZFZS via modulational instability at a rate proportional to the amplitude of the
pump TAE. Zonal scalar potential is described by nonlinear vorticity equation with the nonlinear drive from RS and
MX unbalance, as the pure Alfvénic state is broken by toroidicity. However, this process is limited by two facts. First
of all, the net drive from unbalance of RS and MX is weak (O(ϵ)) due to the small frequency mismatch of AE with
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respect to the SAW continuous spectrum; and, second, zonal scalar potential level is screened by neoclassical shielding
due to magnetically trapped thermal plasma ions (O(

√
ϵ/q2)). As a result, zonal current (zonal magnetic field) with

lower excitation threshold could be preferentially excited in specific plasma equilibria, which, however, do not reflect
typical experimental conditions of tokamak plasmas [13].
It is shown in Ref. [22] that there is no conflict between analytical theory [13] and numerical simulations [23, 24].

The forced driven process [23, 24] is dominated by resonant EP contribution in the linear growth stage of the pump
TAE; while the modulational instability [13] with a much slower time scale dominates when wave-particle interactions
are weak. This finding is novel, since it is usually believed that mode-mode coupling is dominated by bulk plasma non-
resonant particles, while resonant particles play an important role in wave-particle nonlinearity. In this paper, it will be
demonstrated that the forced driven process [22–24] and the modulational instability [13], which are respectively due
to EP and thermal plasma nonlinear responses, dominate the TAE nonlinear dynamics at different stages, respectively
earlier and later.
The rest of the paper is organized as follows. In Sec. II, the theoretical model is presented, while the set of nonlinear

equations for the fully nonlinear dynamics of TAE is derived in Sec. III. In Sec. IV, nonlinear generation of ZFZS is
discussed in detail. Finally, a brief summary and discussions are given in Sec. V.

II. THEORETICAL MODEL

To derive the governing equations for the nonlinear evolution of the system, we take δϕ and δA∥ as the field
variables. Here, δϕ and δA∥ are, respectively, the scalar potential and component of the vector potential parallel to
equilibrium magnetic field. An alternative field variable δψ ≡ ωδA∥/(ck∥) is also adopted for n ̸= 0 TAEs, and one
has δψ = δϕ in the ideal MHD limit. For the nonlinear interactions between TAE and ZFZS, we take δϕ = δϕZ +δϕT ,
with δϕT = δϕ0 + δϕ0∗ . Here, δϕ0 is the TAE with positive real frequency, and δϕ0∗ is its counterpart with negative
real frequency. Note that, in previous papers, TAEs are often separated into a constant amplitude pump and its
upper/lower sidebands with much smaller amplitude to study the linear growth stage of the modulational instability.
The more general approach adopted here can be applied to recover earlier results obtained using pump and upper/lower
sidebands as limiting case, as we will show in Sec. IVB. The well-known ballooning-mode decomposition in the (r, θ, ϕ)
field-aligned toroidal flux coordinates is assumed:

δϕ0 = Â0e
i
∫
k̂0,rdr+i(nϕ−m0θ−ω0t)

∑
j

e−ijθΦ0(x− j). (1)

Here, n is the toroidal mode number, (m = m0 + j) is the poloidal mode number with m0 being its reference value
satisfying nq(r0) = m0, r0 is the plasma radial coordinate about which the TAE mode is assumed to be localized,
q(r) is the safety factor, x = nq−m0 ≃ nq′(r0)(r− r0), Φ0 is the fine scale structure due to k∥ radial dependence and

magnetic shear, Â0 is the envelope amplitude and k̂0,r ≡ nq′θk is the radial envelope wavenumber in the ballooning
representation. For ZFZS with the scalar potential dominated by n = 0,m = 0 components, and n = 0,m ≃ ±1
density perturbation [26], we take

δϕZ = ÂZe
i
∫
k̂Zdr−iωZt

∑
m

ΦZ (2)

with ΦZ accounting for the fine radial structure [19] due to nonlinear mode couplings, and AZ ≡ ÂZ exp (i
∫
k̂Zdr)

being the usual “meso”-scale structure. Note that the summation of m in the expression of δϕZ indicates that the fine
structure of δϕZ [19, 22] locates at the radial position of Φ0(nq−m); i.e., |nq−m| ≃ 1/2 for TAE considered here. In
fact, it is induced by the fine radial structures of Alfvén modes, which, in turn, is connected with their parallel mode
structure because of the dependence of k∥ on r.
The governing equations can be derived from nonlinear vorticity equation

(c2B)/(4πω2)∂l(k
2
⊥/B)∂lδψk + (e2/Ti)⟨(1− J2

k )F0⟩δϕk −
∑
s

⟨(es/ω)JkωdδH⟩k

= −icΛk

[
c2k′′2⊥ ∂lδψk′∂lδψk′′/(4πωk′ωk′′) + ⟨e(JkJk′ − Jk′′)δLk′δHk′′⟩

]
/(ωkB0), (3)

where the two explicitly nonlinear terms on the right hand side are, respectively, MX and RS, ⟨· · · ⟩ indicates velocity
space integration, the subscripts s = i, e, E denote particle species (thermal ions, electrons and EPs), and Λk ≡∑

k′+k′′=k b̂ · k′′ × k′. Here, k are defined as the operators for spatial derivatives, and we have kδϕ ≡ [k∥b + kθ θ̂ +(
k̂r − inq′∂x lnΦ

)
r̂]δϕ. Thus, nq′∂x lnΦ is related to the radial derivative of the fine radial structure, while k̂r is the
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radial envelope wave number accounting for the typical “meso”-scale envelope structures. The nonadiabatic particle
response is derived from the nonlinear gyrokinetic equation [27]:(

−iω + v∥∂l + iωd

)
δHk = −i(es/m)QF0JkδLk − (c/B0)ΛkJk′δLk′δHk′′ . (4)

Here, QF0 = (ω∂E − ω∗)F0 with E = v2/2, ω∗F0 = k · b × ∇F0/Ω. Furthermore, ωd = (v2⊥ +
2v2∥)/(2ΩR0) (kr sin θ + kθ cos θ) for a circular cross section large aspect ratio tokamak, l is the length along the

equilibrium magnetic field line, Jk = J0(k⊥ρL) with J0 being the Bessel function accounting for finite Larmor radius
effects, ρL ≡ mcv⊥/(eB) is the Larmor radius, δL = δϕ− v∥δA∥/c; and other notations are standard.
To close the system, we need another equation. Here, we take parallel component of nonlinear Ohm’s law:

δE∥,k +
∑

k′+k′′=k

b̂ · δuk′ × δBk′′/c = 0. (5)

Here, δu is the E × B drift velocity. Equation (5) is equivalent to the usual quasi-neutrality condition or parallel
Ampére’s law with accuracy of O(k2⊥ρ

2
i ). The nonlinear equations describing the self-consistent evolution of TAE can

then be derived from equations (3), (4) and (5).

III. NONLINEAR TAE SATURATION BY ZFZS AND PSZS

In this section, based on the general equations (3) - (5), we will derive the fully nonlinear equations describing the
self-consistent evolution of a single toroidal mode number TAE, including both ZFZS and PSZS generation, and the
feedback of ZFZS and PSZS on TAE. For simplicity of discussion, well circulating EPs are assumed. However, the
theoretical framework presented here is general, and can be applied to both circulating and trapped EPs. Extension
to different Alfvén modes, e.g., beta-induced AE (BAE) [28, 29] or EPM [5], is straightforward.

A. Nonlinear ZFZS equations

Due to their different drift orbit/Larmor radius sizes, EPs, thermal ions and electrons contribute to different terms
in the vorticity equation, where δϕZ is determined. Thus, our derivations can be greatly simplified with the guidance
of the multiple scale properties of TAE mode structure [30]. For the sake of clarity, MX, RS and the curvature
coupling term (CCT) are derived one by one in the following.
MX is dominated by current-carrying electrons. From equation (3) applied to ZFZS, one has

MX = −i c
B0

1

ωZ

∑
k

b̂ · k′′ × k′ c
2k′′2⊥ ∂lδψk′∂lδψk′′

4πω′ω′′

= −i c
B0

1

ωZ

c2

4π

k2∥,0

ω2
0

b̂ · k0 × k0∗
(
k2⊥,0 − k2⊥,0∗

)
δψ0δψ0∗

= −i c
B0

1

ωZ

c2

4π

k2∥,0

ω2
0

kθ,0(kr,0 + kr,0∗)
2(kr,0∗ − kr,0)δψ0δψ0∗ . (6)

Here, (· · · ) denotes surface averaging, and equation (6) is derived noting |k∥,0| ≃ 1/(2qR0) for TAEs. Noting that kr
is the operator for radial derivative, we then have

MX = − c

B0

1

ωZ

c2

4π

k2∥,0

ω2
0

kθ,0
∂2

∂r2

(
F̂ |Â0|2

∑
m

|Φ0|2
)
. (7)

Here, F̂ ≡ i(k̂r,0 − k̂r,0∗) + ∂r lnΦ0 − ∂r lnΦ0∗ , with k̂r,0 − k̂r,0∗ accounting for radial envelope modulation [13] and
∂r lnΦ0 − ∂r lnΦ0∗ related with fine radial structures of TAE [19]. The occurrence of ∂2r in the MX expression
demonstrates that this nonlinearity becomes most important at radial locations where fine TAE radial structures are
predominant; that is in the inertial layer of AEs.
Reynolds stress nonlinearity is also most important in the inertial layer, since it can be noted that RS contributes

only when k⊥ρL <∼ 1, which is dominated by thermal ions response, while EP (k⊥ρL ≫ 1) and thermal electron
(k⊥ρL ≪ 1) contribution to RS is negligible. With the |ω0| ≫ |k∥v∥|, |ωd| ordering, leading order thermal ion response
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to TAE can be derived as δHL
T,i ≃ (e/Ti)F0JkδϕT . Substituting into vorticity equation for the ZFZS, we then have

[31, 32]

RS = −i c
B0

1

ωZ

∑
k

b̂ · k′′ × k′ ⟨e (JkJk′ − Jk′′) δLk′δHk′′,i⟩

= −i c
B0

e

ωZ
b̂ · k′′ × k′⟨(Jk − 1) (Jk′δLk′δHk′′,i − Jk′′δLk′′δHk′,i)

+ (Jk′ − Jk′′) (δLk′δHk′′,i + δLk′′δHk′,i)⟩. (8)

For thermal ions with |k⊥ρi| <∼ 1 in the inertial layer, the second term on the right hand side of RS dominates.
Therefore,

RS =
c

B0

1

ωZ

n0e
2

Ti
kθ,0ρ

2
i

∂2

∂r2
F̂ |Â0|2

∑
m

|Φ0|2. (9)

Combining equations (7) and (9), We then have

RS+ MX = −1

2

c

B0

n0e
2

Ti
kθρ

2
i

1

ωZ

(
1−

k2∥,0v
2
A

ω2

)
∂2

∂r2
F̂ |Â0|2

∑
m

|Φ0|2. (10)

Note that equation (10) reproduces equation (5) of Ref. 13 if one neglects the resonant particle effects (∂r lnΦ0 − c.c.

in F̂ ), and separates TAE sidebands due to radial envelope modulation of ZFZS from the pump TAE. The finite

coupling comes from toroidicity (1 − k2∥V
2
A/ω

2
0 ̸= 0, breaking of Alfvénic state) and F̂ ̸= 0 due to either envelope

modulation [13] or wave-particle resonances [22].
Energetic particles, with |k⊥ρd,E | ≫ 1 in the inertial layer [30], do not contribute to RS [13]. Here, ρd,E is the

magnetic drift orbit width. EP nonlinearity enters implicitly in the ideal region via the CCT contribution due to
the nonlinear EP contribution to ZFZS. Another reason for EP contribution to be favored in the CCT is that CCT
is related to the particles pressure instead of density. Noting |ω∗,E | ≫ |ω0| for typical EP driven TAEs [16, 33], the
nonlinear gyrokinetic equation for EP response to TAE can be written as [7](

−iω + v∥∂l + iωd − ckZkθJZδLZ/B0

)
δH0 = −i(c/B0)J0δL0kθ∂rF̄0. (11)

Here, kZ stands for kr of the ZFZS response, JZ = J0(kZρL) and δLZ = δϕZ − (v∥/c)δA∥,Z . Thus, ckZkθJZδLZ/B0

corresponds to the scattering of EP orbit by slowly varying ZS. Meanwhile, F̄0 = F0 + δHNL
Z is the “time evolving”

equilibrium EP distribution function, and its expression will be derived in Sec. III C. Note that, compared to equation

(4), the current equation includes only the surface averaged component of δHNL
Z , since δHNL

Z dominates the principal

series of secular terms in the perturbation expansion [7]. δHNL
Z is the phase space zonal structure, and reproduces

hole-clump pair creation in the adiabatic limit [9, 10, 34]. The free energy in velocity space (the first term in QF0,
defined below equation (4)) is neglected with respect to that in configuration space (the second term in QF0), due
to the |ω∗,E | ≫ |ω0| ordering. Equation (11) can be derived from equation (15) of Ref. [7], assuming |ω∗,E | ≫ |ω0|
ordering and circular cross section. EP response to TAE can be derived as [22, 33]

δHF
0 =

c

B0
kθJ0δL0∂rF̄0e

iλd

∑
l

J2
l (λ̂d)e

il(θ−θ0)

ω0 − k∥,0v∥ − lωtr − ickZkθJZδLZ/B0
. (12)

Here, λd = kZρd with ∂θρd = −ωd/(kZωtr). This expression has a form similar to the linear EP response to TAE
derived in Ref. [22], but with a nonlinear propagator and a modified F̄0. This is the fully nonlinear EP response
to a single toroidal mode number TAE, including the nonlinear scattering of EP orbit by ZS and EP “equilibrium”
distribution function modification by TAE (transport). It also bears the information of TAE frequency sweeping due
to EP pitch angle scattering by TAE and phase locking between TAE and resonant EPs [1, 7]. We note that, the
ickZkθJZδLZ/B0 term in the nonlinear propagator may contribute to resonance detuning or resonance broadening,
depending on the mechanism of ZS generation. The nonlinear TAE equation can then be derived by substituting
equation (12) into vorticity equation, and this will be done in Sec. III B.
Nonlinear EP contribution to ZFZS can be derived by transforming into the drift orbit center coordinates [35].

Taking δHNL
Z = eiλdZδHNL

dZ , we then have

(∂t + ωtr∂θ) δH
NL
dZ = − c

B
e−iλdZΛZJ0(γk′)δLk′δHk′′ . (13)
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Separating δHNL
dZ = δHNL

dZ + δ̃HNL
dZ , with (̃· · · ) denoting poloidally varying component, and noting that

| ˜δHNL
dZ,E/δH

NL
dZ,E | ∼ |ωZ/ωtr,E | ≪ 1, we then have

∂tδHNL
dZ = − c

B0
e−iλdZΛZJ0(γk′)δLk′δHk′′ , (14)

ωtr∂θ δ̃HNL
dZ = − c

B0

[
e−iλdZΛZJ0(γk′)δLk′δHk′′

]
AC

. (15)

Here, the subscript “AC” denotesm ̸= 0 component, and (· · · )AC = (̃· · · ). Although | ˜δHNL
dZ,E/δH

NL
dZ,E | ∼ |ωZ/ωtr,E | ≪

1, the dominant EP contribution to ZFZS generation comes from ˜δHNL
dZ,E since it enters vorticity equation via coupling

with geodesic curvature. On the other hand, δHNL
dZ,E , which is the phase space zonal structure response, dominates the

ZFZS feedback onto the AE fluctuation spectrum. That is, it will dominate the nonlinear wave-particle interaction
[1, 7], as we discussed below equation (11) and we will further discuss it in Sec. III C. Noting that ωdZ = ωtr∂θλdZ ,
the EP contribution to ZFZS generation via CCT, after integration by parts, can be rewritten as

CCT =

⟨
e

ω
JZωdδHNL

Z

⟩
= − i

2π

e

ω

⟨
JZ

∫
dθeiλdZωtr∂θ δ̃HNL

dZ

⟩
. (16)

Substituting equation (15) into equation (16), and noting that AB̃ = ÃB and ẽiλdZ = eiλdZ − J0(λ̂dZ), we then have

CCT =
i

2π

c

B0

e

ω

⟨
JZ

∫ dθΛZJk′δLk′δHk′′︸ ︷︷ ︸
A

− J0(λ̂dZ)

∫
dθe−iλdZΛZJk′δLk′δHk′′︸ ︷︷ ︸

B


⟩
. (17)

The A and B terms will be treated separately and rewritten more explicitly in the following, adopting a weak field
perturbation expansion.
Using linearized EP responses in the nonlinear terms (i.e., the linear expression for δHk′′ in the expression above),

and ignoring the weak non-local coupling between two poloidal harmonics located at different radial positions, we
then have

A = −Ĥ
∫
dθ [J0∗δL0∗δH0 − J0δL0δH0∗ ]

= 2πĤ
e

m
J0J0∗Â0Â0∗

×
∑
m

|Φ0|2
(
1−

k∥v∥

ω

)
0

(
1−

k∥v∥

ω

)
0∗
Q0F0

×
∑
l

[
J2
l (λ̂d0)

ω0 − k∥,0v∥ − lωtr − ickZkθ,0JZδLZ/B0

+
J2
l (λ̂d0∗)

ω0∗ − k∥,0∗v∥ − lωtr − ickZkθ,0∗JZδLZ/B0

]
.

(18)

Here, Ĥ = kθ(kr,0 + kr,0∗). In deriving equation (18), the ideal MHD condition for TAE (δϕL ≃ δψL) is applied to
simplify δL0 and δL0∗ [21].
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Assuming that dominant contribution comes from resonant EPs, we then have

A = −2iπ2Ĥ
e

m
J0J0∗Q0F0

1

ω2
0

×
∑
l

l2ω2
tr

(
J2
l (λ̂d0) + J2

l (λ̂d0∗)
)

×δ(ω0 − k∥,0v∥ − lωtr − ickZkθ,0JZδLZ/B0)

×|Â0|2
∑
m

|Φ0|2. (19)

In deriving equation (19), the resonance condition is applied to simplify δLk (i.e., ω − k∥,0v∥ ≃ lωtr). Equation (19)
suggests that, in general, the effects of ZS scattering are both resonance detuning (nonlinear frequency shift) as well
as resonance broadening. Depending on the specific conditions, either effect may be dominant. For example, when
δLZ is imaginary and kZ predominantly real, as in the linear growth stage where ZS is forced driven by resonant
EP effects [22], ZS scattering on wave particle resonant interaction with TAE predominantly enhances resonance
detuning. While the spontaneously excited ZF/ZC structures are real, and the effect on TAE resonances with EPs is
predominantly resonance broadening. However, as we clarify in Sec. IV below, the CCT term due to EP contribution
can be ignored with respect to MX and RS, when ZF/ZC are spontaneously excited. Thus, equation (19) suggests
that EP are importantly contributing to ZFZS forced driven excitation, that they enhance resonance detuning, and
that the CCT is due to resonant wave-particle interactions and the finite orbit width (FOW) effects (noting that
resonant EP drive comes from l ̸= 0 transit harmonics). One would then expect, compared to the well-circulating
EPs assumed here, that trapped EPs may further enhance the nonlinear couplings due to their relatively large bounce
orbits.
The B manipulated and rewritten similarly. Substituting EP response (δHk′′) into B, and noting kZ = kr,0+kr,0∗ ,

we obtain:

B = Ĥ
e

m
J0J0∗

∫
dθe−iλdZ δL0δL0∗Q0F0

×

[
e−iλd0

∑
l

Jl(k⊥,0ρ̂d)e
il(θ−θ0)

ω0 − k∥,0v∥ − lωtr − ickZkθ,0JZδLZ/B0

+eiλd0∗
∑
l

(−1)lJl(k⊥,0∗ ρ̂d)e
il(θ+θ0∗ )

ω0∗ − k∥,0∗v∥ − lωtr − ickZkθ,0∗JZδLZ/B0

]
= 0. (20)

Collecting results from equations (19) and (20), assuming |k⊥ρd,E | ≪ 1, and keeping only l = ±1 transit resonances,
equation (17) finally becomes

CCT = −π
4
Ĥ

c

B0

e2

m

n0E
ωZ

k2⊥
ω2
0

Ĝ|Â0|2
∑
m

|Φ0|2.

Here, Ĝ comes from resonant EP, and is defined as

Ĝ ≡
⟨
ω∗,E v̂

2
d,E(F̄0E/n0E)

×
(
δ(ω0 − k∥v∥ − ωtr − ickZkθ,0JZδLZ/B0) + δ(ω0 − k∥v∥ + ωtr − ickZkθ,0JZδLZ/B0)

)⟩
.

Ignoring the term related to ZS induced scattering ickZkθJZδLZ/B0, Ĝ is proportional to the resonant EP contribu-
tion. Thus, the CCT term is proportional to the effective “linear” growth rate of TAE, and is important only in the
linear growth stage of TAE. In the expression of Ĝ, the FLR effects are consistently ignored due to the k⊥ρd,E ≪ 1
assumption.
The nonlinear vorticity equation for ZFZS can then be derived as

ωZ χ̂iZδϕZ = −π
4

c

B0

(
kθk

2
⊥

kZ

1

ω2
0

n0E
n0

Ti
miρ2i

Ĝ− 2

π
kθ

(
1−

k2∥V
2
A

ω2
0

)
F̂

)
|Â0|2

∑
m

|Φ0|2, (21)

with the first term on the right hand side originating from resonant EP contribution to CCT in the ideal region, and
the second term from RS&MX of thermal plasma contribution in inertial layer. The CCT by EPs is much larger than
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RS&MX by O(nE,Rω̂∗Eq
2/(n0ω0ϵ)), and dominates in the linear growth stage of TAE. Here, nE,R is the “number”

of resonant EPs. On the other hand, as nE,R decreases due to, e.g., wave-particle phase space nonlinearity, RS&MX
may take over the long time scale nonlinear behavior. Thus, the physics investigated in Ref. [13] and Refs. [23, 24]
occur at different stages of the nonlinear dynamics. We will discuss the differences between these two processes in
more detail in Sec. IV.
The equation for zonal magnetic field can be derived from the parallel component of nonlinear Ohm’s law [13].

Noting δE∥,Z = −∂lδϕZ − ∂tδA∥,Z/c, δB = ∇× δA∥b and δu⊥ = c∇δϕ× b/B, the zonal component of equation (5)
is then

∂tδA∥,Z = − c

B
b · ∇⊥δA∥ ×∇⊥δϕ

= i
c

B0
kθ,0

∂

∂r

(
δA∥,0δϕ0∗ − δϕ0δA∥,0∗

)
.

Taking δϕ = δψ for TAEs in the inertial layer, and noting that |∂r ln k∥| ≪ |kr| for TAEs, we then have

∂tδA∥,Z = i
c

B0
kθ,0k∥0

(
1

ω0
+

1

ω0∗

)
∂

∂r
|δϕ|2.

Noting that ω0 = ω0r + i∂t, we obtain

δψZ = − 1

B0

kθ,0
ω0

∂

∂r

(
|Â0|2

∑
m

|Φ0|2
)
. (22)

Here, δψZ ≡ (ω0/ck∥,0)δA∥,Z .

B. Nonlinear TAE equations

In the vorticity equation of TAE, the nonlinear terms contains the CCT dominated by EP response, and RS&MX
responses due to bulk plasmas discussed in Ref. [13]. Substituting equation (12) into (3), one then obtains

−k2∥δψ0 +
ω2
0

V 2
A

δϕ0 −
ω2
G

V 2
A

δϕ0 −
4πω0e

c2k2⊥,0

⟨
J0ωdδH

F
0

⟩
E

= −i c
B0

kZkθ,0
k2⊥,0

(
k2Z − k2⊥,0

) ω0

V 2
A

δϕ0 (δϕZ − δψZ) . (23)

The last term on the left hand side is the nonlinear CCT, while the terms on the right hand side are RS&MX derived
following the same procedure of equation (10). Note that equation (23) has the same structure as its counterpart
without EP effects [13, 21], with the additional physics of the nonlinear CCT as is shown in equation (12). Ignoring
all the nonlinear terms, equation (23) then describes linear TAE excitation by well circulating EP transit resonances
[16].
The other equation of TAE, describing the breaking of ideal MHD condition by nonlinear effects, is derived from

the parallel component of the nonlinear Ohm’s law

δϕ0 − δψ0 =
c

B0

kθ
ω0
δϕ0∂r (δψZ − δϕZ) . (24)

Substituting equation (24) into (23), one then reproduces equation (7) of Ref. [13] in the proper limit, i.e., ignoring
EP contributions including wave-particle resonances [19] and separating TAEs into finite amplitude pump and its
lower/upper sidebands due to radial envelope modulation by ZFZS. We note that, in the linear growth stage of TAE,
TAE nonlinearity is dominated by the scattering of EP orbit by ZFZS and modification of EP equilibrium (PSZS).
While in the TAE saturation stage, RS&MX dominates. To understand the more general situations with all the
nonlinearities acting on the same footing, nonlinear equations must be investigated numerically.

C. Nonlinear EP distribution function evolution

It is mentioned in Sec. IIIA that, δHNL
Z dominates the PSZS. Noting that F̄0 = F0 + δHNL

Z , we then have, from
equation (14),

∂tF̄0 = −i(c/B0)kθJ
2
0 (kZ ρ̂d)∂r[J0δL0δH0∗ − J0∗δL0∗δH0],



8

and F̄0 can be solved for explicitly using Laplace transformation. Taking

F̂0(ω̂) ≡
1

2π

∫ ∞

0

eiω̂tF̄0(t)dt

with ω̂ being the variable for the slow temporal evolution of F̂0, we then have

F̂0(ω̂) =
i

2πω̂
F̄0(0) +

c

B0
J2
0 (kZ ρ̂d)kθ

1

ω̂

∂

∂r

∫
[J0δL0(y)δH0∗(ω̂ − y)− J0∗δH0∗(y)δH0(ω̂ − y)]dy. (25)

Here, F̄0(0) is the initial value of F̄0 at t = 0. The effects of collisions and external source can be included in equation
(25) straightforwardly [7]. EP response to TAE can also be derived, and we obtain

δHd,0 = − e

m

∑
l

Jl(k⊥ρ̂d)e
il(θ−θ0)

∫
Q0,y′ F̂0(ω̂ − y′)δL0(y

′)

ω0 − k∥v∥ − lωtr − ickZkθδLZ/B0
dy′. (26)

Substituting equation (26) into (25), we then obtain

F̂0(ω̂) =
i

2πω̂
F̄0(0)−

c

B0

e

m
J2
0 (kZ ρ̂d)kθ

1

ω̂

∂

∂r

×
∫∫ [

δL0(y)F̂0(ω̂ − y′ − y)δL0∗(y
′)

y − ω0 − k∥v∥ − lωtr − ickZkθδLZ/B0
− δL0∗(y)F̂0(ω̂ − y′ − y)δL0(y

′)

ω0 − y − k∥v∥ − lωtr − ickZkθδLZ/B0

]
dydy′. (27)

Note that this equation contains F̂0 on both sides as well as wave-particle decorrelation due to ZS in the denominator,
and describes the self-consistent evolution of EP equilibrium distribution (transport) due to emission and reabsorption
of symmetry breaking TAEs. Thus, it corresponds to the Dyson equation in quantum field theory. Its solution, provides
the renormalized expression of F̂0 and thus, F̄0. The fully nonlinear TAE equation can then be derived, including the
self-consistent interplay between TAE and the EP source, following the derivation for EPM [7].
For nearly periodic fluctuations, with ω0(τ) = ω0r + iγ0(τ), we can assume δϕ0(t) ≡ limτ→t δϕ(τ) exp(−iω0(τ)t),

with δϕ(τ) = δϕ0 exp(−i
∫ τ

0
ω0(t

′)dt′ + iω0(τ)τ). Thus, one can show that the Laplace transform

δϕ(ω) =
i

2π

δϕ(r, τ)

ω − ω0(τ)
.

Assuming coherent modes with γL ≪ ω0r, we obtain, after some tedious but straightforward algebra

F̂0(ω̂) =
i

2πω̂
F̄0(0)− 2

c

B0

e

m

kθ
ω̂
J2
0 (kZ ρ̂d)

∑
l

J2
l (k⊥ρ̂d)

× ∂

∂r

[
(ω̂ − iγL)Q0F̂0(ω̂ − 2iγL)

(ω0r − k∥v∥ − lωtr + ickZkθδLZ/B0)2 − (ω̂ − iγL)2

(
1−

k∥v∥

ω0r

)2

|δϕ0|2
]
. (28)

This expression contains the information of EP radial diffusion and pitch angle scattering due to TAEs, and in the
adiabatic limit, reproduces wave-particle trapping [7]. In the simple limits of EPM driven by deeply trapped particle
precession resonance, the phase locking between the radially transported EPs and frequency sweeping mode leads
to convective transport of EPs [7], as referred to as mode particle pumping [36]. A similar picture is also proposed
for the nonlinear saturation of EP-induced geodesic acoustic mode [37], where phase locking between the pitch angle
scattered EPs and the downward frequency chirping EGAMs eventually leads to EP loss due to scattering into lost
orbits.
Equations (21), (22), (23), (24) and (28), thus, provide the set of fully nonlinear equations describing the nonlinear

evolution of a single toroidal mode number TAE, including both wave-wave nonlinearities and wave-particle phase
space nonlinearities. For an in-depth understanding of the nonlinear process, active interactions between analytical
theory and large scale simulations based on first principles are needed. As a simple application, in Sec. IV, we will
neglect the wave-particle nonlinearities, and focus on the nonlinear ZFZS generation. Several properties of ZFZS
generation are discussed, i.e., fine- vs. meso- scale radial structure, spontaneous excitation vs. forced driven and e.s.
ZF vs. e.m. ZC. This allows us to illuminate the underlying physics processes and to clarify the discrepancies between
the analytical theory [13] and numerical simulations [23, 24].
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IV. NONLINEAR ZFZS GENERATION

In this section, a simplified model neglecting F0,E temporal evolution is considered to investigate the different roles
played by EPs and thermal particles in ZFZS generation. The spontaneous excitation and forced driven processes
are discussed, respectively, in Refs. [13] and [22]. In this paper, equations (21) to (24) are derived as the governing
equations for ZFZS generation, including both processes presented in Refs. [13, 22], with the δHF

0 in equation (23)
replaced by its linearized expression. Here, we will show the two limiting cases discussed respectively in Refs. [13, 22];
that is forced driven excitation of ZFZS [22], which is expected to dominate the early phase of linear instability,
and the spontaneous emission of ZFZS [13], which is expected to take over the nonlinear dynamics at later times,
after TAE fluctuation amplitude has exceeded a critical threshold value. Wave particle phase space nonlinearities,
meanwhile, are expected to be most important in between these two phases.

A. ZFZS forced driven by TAE in the linear growth stage

In the linear growth stage of TAE, with the CCT due to EP response dominating over RS&MX by thermal particles,
one can neglect RS&MX in equation (21),

∂tχ̂iZδϕZ = i
π

4

k2⊥
kZ
K̂Ĝ|Â0|2

∑
m

|Φ0|2e2γLt. (29)

Here, ωZ ≡ i∂t|Z accounts for temporal evolution, and K̂ ≡ cn0ETikθ/(B0n0miρ
2
iω

2
0). Noting that ∂t = 2γL, we then

have

δϕZ = i
π

8

k2⊥
kZ

K̂Ĝ

γLχ̂iZ
|Â0|2

∑
m

|Φ0|2e2γLt. (30)

Taking ΦZ ≡ |Φ0|2 as the ZF fine-scale structure in equation (2), the meso-scale radial envelope of ZF is then

ÂZ = i
π

8

k2⊥
kZ

K̂Ĝ

γLχ̂iZ
|Â0|2. (31)

This is a typical forced driven process, with the growth rate of the zonal scalar potential being twice that of TAE, and
its amplitude proportional to the TAE intensity. ZC can also be forced driven by TAE. It can be readily estimated
from equation (22) of Ref. [13] that the amplitude of δψZ is much smaller than δϕZ , in that, compared to the case
considered in Ref. [13], the ZF term is enhanced due to EP response while the ZC term is weakened (frequency
mismatch |∆T | replaced by |2γL| in the ZC term).
Note that, for the forced driven case, |ωZ | = 2γL and |kZ | = 2|∂r ln δϕ0| are fully determined by the linear spectrum

of TAE, such that TAE nonlinear equations are not needed to close the system [22]. While for the spontaneous
excitation case [13], both TAE sidebands and ZFZS equations are needed for taking into account the reinforcement
by nonlinearity of the envelope modulation [18].

B. ZFZS spontaneous excitation by TAE via modulational instability

When TAEs are saturated due to wave-particle phase space nonlinearities, the CCT due to EP nonlinearities can be
neglected (note that Ĝ ∝ γL), and RS&MX play the dominant role in the vorticity equation. Equations (21)-(24) can
then recover the coupled nonlinear ZFZS&TAE equations derived in Ref. [13], leading to ZFZS spontaneous excitation
when the conditions for modulational instability are satisfied. The finite coupling comes from radial envelope induced
symmetry breaking [18, 38], and thus it is natural to separate the TAEs into a constant amplitude pump and its
sidebands due to ZFZS radial envelope modulation [18]. The threshold condition for the modulational instability is
determined by the frequency mismatch of TAE sidebands (∆T /ω0 ∼ O(ϵ)) associated with finite envelope modulation.
Separating TAEs into fixed amplitude pump and sideband, i.e., δϕ0 = δϕP + δϕ+, δϕ0∗ = δϕP∗ + δϕ−,

δϕP = A0e
i(nϕ−m0θ−ω0t)

∑
j

e−ijθΦ0(x− j),

δϕ± = A±e
±i(nϕ−m0θ−ω0t)ei(

∫
k̂Zdr−ωZt)

×
∑
j

e∓ijθ

{
Φ+(x− j)

Φ−(x− j)

}
.
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Here, θk,P = 0 is assumed for the pump TAE. Since the spontaneous excitation process dominates when EP resonant

drive is very weak, ∂r lnΦ0 − c.c. in F̂ vanishes, and the only symmetry breaking mechanism (to have F̂ ̸= 0) is finite
envelope modulation. As a result,

∂2

∂r2
F̂ |A0|2

∑
m

|Φ0|2 =
∂2

∂r2
F̂ (δϕP δϕ− + δϕP∗δϕ+)

= ik̂Zk
2
Z(δϕP δϕ− − δϕP∗δϕ+)

and, thus, equation (10) becomes

RS+ MX = −i c
B0

n0e
2

Ti
kθk̂Zk

2
Zρ

2
i

1

ωZ

(
1−

k2∥,0v
2
A

ω2
0

)
(APA− −AP∗A+)

∑
m

|Φ0|2. (32)

Noting that ωZ = i∂t and k2Z =
(
k̂Z − i∂r

∑
m ln |Φ0|2

)2
from the balance of the radial variations on both sides of

the ZFZS vorticity equation, equation (32) can then recover equation (3) of Ref. [13] after averaging over parallel
mode structures (

∑
m |Φ0|2 = 1 normalization is assumed in Ref. [13], which applies to high/moderate ballooning

drift waves [31], while it may not be generally valid for TAEs). Taking into account the fine-scale structure of ZFZS,
and keeping only the dominant poloidal harmonic of TAE, we then obtain

iωZ χ̂iZδϕZ = − c

B0
kθk̂Z

(
1−

k2∥V
2
A

ω2
0

)
(APA− −AP∗A+) |Φ0|2. (33)

The zonal current equation can be derived from equation (22), noting that ∂r|δϕ0|2 = ∂rδψZ ,

δψZ = −i c
B0

kθ
ω0
kZ (APA− +AP∗A+) |Φ0|2. (34)

Neglecting the contribution of EPs, we then obtain, from equations (23) and (24), the nonlinear equations for TAE
upper/lower sidebands,(

k2∥V
2
Aδψ − ω2δϕ+ ω2

Gδϕ
)
±

= i
c

B0

kZkθ,0
k2⊥,±

(
k2Z − k2⊥,0

)
ω0

{
δϕP
δϕP∗

}
(δϕZ − δψZ) , (35)

(δϕ− δψ)± = i
c

B0

kθkZ
ω0

{
δϕP
δϕP∗

}
(δψZ − δϕZ) . (36)

Substituting equation (36) into (35), noting that k2∥V
2
A ≃ ω2, |kr| ≃ |∂r lnΦ0| ≫ |kθ| for pump TAE in the inertial

layer, |kZ | ≃ |∂r lnΦZ | = 2|∂r lnΦ0| and |k2⊥,±| ≃ (|∂rΦ0|+ |∂rΦZ |)2 ≃ 9|∂rΦ0|2, we then have(
k2∥V

2
A − ω2 + ω2

G

)
k2⊥,±δϕ± = 6i

c

B0
kθkZk

2
r,0ω0

{
δϕP
δϕP∗

}
(δϕZ − δψZ). (37)

Note that, in this paper, (r, θ, ϕ) is assumed as a right-handed coordinate, and the nonlinear terms in equations (33),

(34) and (37) have opposite sign to Ref. [13]. Assuming Φ0 ≡ exp(−x2/(2∆2
r))/(π

1/4∆
1/2
r ) with ∆r ∼ O(

√
ϵ) being

the characteristic scale length of the fine structure, ΦZ = |Φ0|2, defining ET ≡ ⟨⟨LT ⟩⟩, with LT ≡ k2∥V
2
A + ω2

G − ω2
T ,

⟨⟨· · · ⟩⟩ ≡
∫
(· · · )|Φ0|2dx, and noting Φ± = Φ0 to the leading order, we then have

k2±,⊥E±A± = 6i
c

B0
kθω0

{
AP

AP∗

}
(AZ −ΨZ)⟨⟨kZ |∂rΦ0|2⟩⟩, (38)

ΨZ = −i c
B0

kθk̂Z
ω0

(APA− +AP∗A+), (39)

iωZ χ̂iZAZ = − c

B0
kθk̂Z⟨⟨1− k2∥V

2
A/ω

2
0⟩⟩(APA− −AP∗A+). (40)

Here, ΨZ is the radial envelope of δψZ , E± =
(
ω4
AΛT (ω)D(ω, kZ)/(ϵ0ω

2)
)
ω=ω±

, ωA ≡ VA/(qR0), ΛT =
√
−Γ+Γ−

with Γ± = (ω2/ω2
A − 1/4) ± ϵ0ω

2/ω2
A, D(ω, kZ) = ΛT − δŴk(ω, kZ), and δŴk(ω, kZ) plays the role of a normalized
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potential energy [39–41]. Substituting A± from equation (38) into equations (39) and (40), letting ωZ = iγZ and
noting D± = ±(∂D0/∂ω0)(iγZ ±∆T ) with ∆T = ωT (kr)− ω0 being the frequency mismatch, we then obtain

AZ = −6

(
c

B0

kθ
k⊥

)2
ω0

χ̂iZ
k̂Z⟨⟨kZ |∂rΦ0|2⟩⟩

⟨⟨1− k2∥V
2
A/ω

2
0⟩⟩ϵ0ω2

A

ω4
AΛT (ω)∂D0/∂ω0(γ2Z +∆2

T )
|A0|2 (AZ −ΨZ)

≡ −α̂Φ(AZ −ΨZ)/(γ
2
Z +∆2

T ), (41)

ΨZ = 6

(
c

B0

kθ
k⊥

)2

k̂Z⟨⟨kZ |∂rΦ0|2⟩⟩|A0|2
2∆T ϵ0ω

2
A

ω4
AΛT (ω)∂D0/∂ω0(γ2Z +∆2

T )
(AZ −ΨZ)

≡ −α̂Ψ(AZ −ΨZ)/(γ
2
Z +∆2

T ). (42)

Note that, equations (41) and (42) correspond, respectively, to equations (19) and (20) of Ref. [13]; and the coefficients
α̂Φ and α̂Ψ correspond to αΦT and α̂ΨT of Ref. [13], with the enhanced coupling due to inclusion of ZFZS fine radial

structure taken into account [19]. The equations in Ref. [13] can be recovered by replacing ⟨⟨kZ |∂rΦ0|2⟩⟩ with k̂Zk2θ/3
and k⊥ with (k̂2Z + k2θ)

1/2. The nonlinear dispersion relation of the modulational instability can then be derived as:

γ2Z = α̂Ψ − α̂Φ −∆2
T . (43)

The condition for the modulational instability is given by

α̂Ψ − α̂Φ > ∆2
T . (44)

Thus, the threshold condition on pump TAE amplitude is much lower due to the enhanced nonlinear coupling, while
the conditions for e.s. ZF or e.m. ZC to be preferentially excited is exactly the same as that discussed in Ref. [13].
Assuming the condition for ZC excitation is satisfied (∆T /ω0 > 0) [13], the threshold on pump TAE amplitude for

ZC spontaneous excitation is lower by
√
k2θ/(3⟨⟨|∂rΦ0|2⟩⟩) ∼ O(ϵ) due to the inclusion of ZFZS fine scale structures.

V. DISCUSSIONS AND SUMMARY

The different properties of the nonlinear processes, e.g., fine- vs. meso- radial scale, forced driven vs. spontaneous
excitation, be illuminated from our derivations and theoretical analysis in Sec. IV. Below, we discuss them one by
one.

1. Forced driven vs. spontaneous excitation

In the linear growth stage of the pump TAE, there is an e2γLt factor in the nonlinear terms due to the coupling
of the pump TAE to its complex conjugate. The operator for temporal evolution ωZ is then ωZ = 2iγL, while the
driven ZF amplitude is proportional to the intensity of pump TAE. This is a typical forced driven process. On the
other hand, as TAE saturates due to wave-particle nonlinearities, the CCT contribution becomes negligible, and
finite RS&MX requires finite radial envelope modulation [38] (i.e., the sidebands assumed in Ref. [13]). As a result,
nonlinear equations for sidebands are needed to close the system; and for analyzing spontaneous excitation of ZFZS.
This clarifies the discrepancy of simulations [23, 24] and analytical theory based on modulational instability of

a pump TAE with prescribed amplitude [13]. In the simulations, the TAEs are driven by EPs, and the observed
forced driven process occurs in the linear growth stage of TAE [23]. To observe the spontaneous excitation process,
one has to wait long enough till RS&MX are comparable to/larger than the CCT; and one has to be careful in
distinguishing the underlying nature of the different zonal components. One possible mean to clearly demonstrate
the spontaneous excitation process, is to get a stationary pump TAE with constant amplitude by carefully posing an
artificial dissipation to balance the EP drive.

2. Fine-scale vs. meso-scale

The radial structure of the generated ZF component of the ZS is given in equation (21), and the radial variation
can be from either the meso-scale radial envelope (|A0|2) or the fine-scale parallel mode structure (

∑
m |Φ0|2) of pump

TAE. Note that equation describing ZF excitation by drift waves (DWs) has a similar structure [18], but ZF excited
by DWs typically has a meso-scale structure. In fact, for DWs characterized with moderate or strong ballooning
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structure,
∑

m |Φ0|2 = 1 [18, 31], and radial variation comes from |A0|2. On the other hand, AEs are typically weakly
ballooning due to the response to SAW continuum, such that

∑
m |Φ0|2 dominates radial variation. As a result,

ZF driven by TAE (more generally, AEs) has a fine-scale radial structure, in addition to the well-known meso-scale
envelope. The same argument and considerations apply for the ZC component of the ZS, expressed by equation (22).

3. Zonal flow vs. zonal current

The condition for ZF or ZC spontaneous excitation has been discussed in detail in Ref. [13]. ZF and ZC generation
are described by, respectively, vorticity equation and Ohm’s law. It is shown in equation (22) of Ref. [13] that,
for pump TAE with given amplitude, ZF generation is screened by neoclassical shielding and limited RS&MX near-
cancelation; while ZC generation is related to frequency mismatch. For certain plasma equilibria, ZC generation has
a much lower threshold condition. On the other hand, with EP effect taken into account, ZF generation can dominate
since CCT due to EP contribution is much larger than RS&MX, as we shown in Sec. III A. This explains why e.s.
ZF generation is always observed in the simulations [23, 24, 42]. Furthermore, note that in Ref. [23], the bulk plasma
is treated by MHD model such that neoclassical shielding is not accounted for, and ZF is further enhanced. To
observe ZC, one has to run the simulation longer till EP effects are weakened by, e.g., wave-particle trapping. Plasma
equilibrium must also be compatible with ZC excitation conditions [13].
In conclusion, the set of equations describing fully nonlinear evolution of a single toroidal mode number TAE are

derived, including both ZFZS generation and wave-particle phase space nonlinearities. A simplified case neglecting
wave-particle phase nonlinearity is then investigated to study the different roles of EPs and bulk plasma on ZFZS
generation. The EP and bulk plasma contribution are derived on the same footing, and we show that, due to their
different orbit sizes, EP contribution dominates in the ideal region of TAE while bulk plasmas dominates in the inertial
layer. On the other hand, due to their different mechanisms breaking the symmetry, EP contribution dominates in
the linear growth stage of the pump TAE, while bulk plasma contribution takes over as the pump TAE saturates
by wave-particle phase space nonlinearity. Consequently, the different properties of ZFZS generation observed in
numerical simulations, e.g., forced driven vs. spontaneous excitation, fine- vs. meso- scale radial structure and e.m.
ZC vs. e.s. ZF, can be understood and explained.
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