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Motivated by the recent global gyrokinetic simulations of electrostatic drift-wave instabilities
(DWIs) in the strong plasma gradient region of toroidal plasmas [1–3], we have carried out the
corresponding analytical and numerical investigations in the case of ion temperature gradient (ITG)
driven modes. It is shown that, for sufficiently strong plasma gradients, the eigenmodes are slab-like
and predominantly bounded by the plasma non-uniformities. Our results are qualitatively consistent
with the simulation observations.
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Recently, gyrokinetic simulations have been carried out
to investigate the characteristics of the electrostatic drift-
wave instabilities (DWIs) in the strong plasma gradient
region of tokamak plasmas [1–3]. It is found that, unlike
the weak gradient case, the eigenmodes can peak away
from the outboard midplane and have shorter radial cor-
relation lengths [2, 3]. In this work, motivated by the
simulation observations, we have carried out correspond-
ing theoretical analyses in order to clarify the nature of
DWI eigenmodes in the strong plasma gradient region of
toroidal plasmas. Our results indicates that, in the limit
of strong plasma gradients, the eigenmodes are radially
bounded by the plasma non-uniformities [4] and exhibit
little ballooning structures. In other words, in the low-
est order, these DWI eigenmodes can be understood in
the cylindrical limit with weak couplings to the poloidal
sidebands.
Let us consider electrostatic drift-wave instabilities

in an axisymmetric, low-β, large aspect-ratio tokamak
with concentric circular magnetic surfaces. Here, β is
the ratio between plasma and magnetic pressures. The
(r, θ, ζ) coordinates are adopted here; corresponding to
the minor radius, poloidal and toroidal angles, respec-

tively. The equilibrium magnetic field is given by ~B =
B0(1 − ǫ cos θ)(êζ + ǫ/qêθ), with ǫ = r/R ≪ 1, R the
major radius, and q the safety factor. The equilibri-
um distribution function is taken to be local Maxwellian,

F0,j = N(πv2tj)
−3/2e−v2

. Here, j = i, e denotes the par-
ticle species, and the velocity is normalized to the ther-
mal velocity vtj =

√

2Tj/mj. Other notations are stan-
dard. The density and temperature profiles, meanwhile,
are modeled as

N(r) = N0e
− arctan(

r−r0
r̄n

), Tj(r) = T0,je
− arctan(

r−r0
r̄t,j

)
,

where r0 is the reference radius, and r̄n, r̄t,j are inho-
mogeneity constants. The plasma non-uniformity func-
tion responsible for the instability drive is then given by
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r−1
n ≡ −∂rN/N = [r̄n(1 + (r − r0)

2/r̄2n)]
−1. Consid-

ering perturbations of a single toroidal mode number, n,
the electrostatic potential and non-adiabatic distribution
function are expressed as sums of poloidal harmonics:

[δφ, δG] = e−iωt−inζ
∑

m

eimθ[δφ̂m(r), δĜm(r)].

Before we present the detailed analysis, it is instruc-
tive to give some qualitative remarks. Let ∆s denote
the distance between mode rational surfaces of adja-
cent poloidal harmonics, and ι = rn/∆s be the nor-
malized density scale length. Note that, in the usual
weak non-uniformity limit with rn ≫ ∆s, the radial en-
velope is localized by the plasma non-uniformities with
a typical width of the order of

√
ρi0rn. We can then

treat δ ≡ √
ρi0rn/∆s =

√
ǫρι ≤ 1 as the strong plas-

ma gradient condition, where ǫρ = ρi0/rn. That is, if
the strong plasma gradient condition is satisfied, plasma
non-uniformities will render the meso-scale radial enve-
lope comparable to the microscopic scale, and thus, can
be expected to make significantly impacts on the eigen-
mode structures. Furthermore, due to the breakdown of
scale-length separation, one would also expect the usual
large-n ballooning representation [6, 7], in general, is not
valid here. Using the typical parameters in [3]: s ≃ 0.5,
ǫρ ≃ 8.0 × 10−2, kθρi0 ≃ 0.3, we find δ ≃ 0.53, which
suggests that the simulation results should fall within
the strong plasma non-uniformities regime.
Retaining explicitly the plasma non-uniformities, the

ion linear gyrokinetic equation [5] can be readily ex-
pressed as

[ω + ωtiv‖(z − p)]δĜm + ω̄∗i,0e
− arctan(

η̄iz

ῑ
) ǭn(v

2
‖ +

1

2
v2⊥)

×[(1 + s∂z)δĜm+1 + (1 − s∂z)δĜm−1]

= (ω + ωt
∗i)

eF0

Ti
〈δφ̂〉m. (1)

Here, s = r0q
′
0/q0, q0 = q(r0), kθ = nq0/r0, ǫn = rn/R,

z = kθs(r − r0), p = m − nq0, ῑ = kθρi0sǭ
−1
ρ , ι = ῑ/σ,

σ = (1 + z2/ῑ2)−1, 〈A〉 is the gyrophase average of
A, ωti = vti/(qR) and ω∗i = kθTi/(eBrn) = σω̄∗i
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are, respectively, the ion transit and diamagnetic fre-
quencies, and ωt

∗i = ω∗i[1 + ηi(v
2 − 3/2)], with ηi =

η̄i(1 + z2/ῑ2)(1 + η̄2i z
2/ῑ2)−1, η̄i = r̄n/r̄t,i. In terms of

the parameters above, the strong plasma gradient con-

dition becomes δ = kθρi0sǫ
−1/2
ρ ≤ 1. Thus, under the

gyrokinetic ordering ǫρ ≪ 1, the condition can be more
readily satisfied for weak magnetic shear and long wave-
length.
To simplify the analysis and, thereby, gain more in-

sights into the main features of DWIs in the strong plas-
ma gradient region, we solve Eq. (1) for circulating ions
by adopting the following ordering: bi ≡ k2θρ

2
i0 ∼ ι−2 ∼

ǭn/|Ω| ≪ 1, and neglecting the v‖ modulation along the
orbit. We further assume that the electron response is
adiabatic, and, hence, focus on the ion temperature gra-
dient (ITG) driven mode as an example of DWIs. Apply-
ing the quasi-neutrality condition then straightforwardly
yields the eigenmode equation,

∂2
zδφ̂m +Qδφ̂m = Ĉ(δφ̂m+1, δφ̂m−1). (2)

Here, Q is the corresponding potential structure in the
slab limit and is given by

Q =
2

bis2
(g− − 1)earctan

η̄iz

ῑ − earctan
η̄ez
ῑ

τ0

g+
− 1

s2
, (3)

with τ0 = T0,e/T0,i, η̄e = r̄n/r̄t,e,

g± = {Ω+ σe− arctan
η̄iz

ῑ [1 + ηi(−∂λ|λ=1 ±
1

2
)]}I1,

I1 = −αZ(
√
λαΩ), α(p) =

e
1

2
arctan

η̄iz

ῑ

Ωt|z − p| ,

and the frequencies are normalized by ω̄∗i,0, i.e., Ω =
ω/ω̄∗i,0, Ωt = 2ǭn/(q0kθρi0). Meanwhile, the poloidal

coupling term Ĉ is

Ĉ(δφ̂m+1, δφ̂m−1) (4)

= − 2ǭn
bis2g+

[(Ω + σe− arctan
η̄iz

ῑ )(−1

2
+ ∂λ|λ=1)

−ηiσe
− arctan

η̄iz

ῑ (
1

4
+ ∂2

λ|λ=1)]

×[I+2 (1 + s∂z)δφ̂m+1 + I−2 (1− s∂z)δφ̂m−1],

where

I±2 =
α(p)α(p± 1)[SZ(

√
λα(p)Ω) − Z(

√
λα(p± 1)Ω)]

[α(p)− Sα(p± 1)]
√
λΩ

,

with S = sign[(z − p)(z − (p ± 1))] and Z is the plas-
ma dispersion function. It is to be emphasized that Eq.
(2) retains the transit resonance and indicates that the
eigenmode structures can be strongly affected by plasma
non-uniformities.
The radial eigenmode equation, Eq. (2), has been

solved numerically with typical simulation parameter-
s [3] and varying δ̄ ≡ δ(z = 0) in order to investigate

the effects of plasma non-uniformities on the ITG-DWI
eigenmodes. Specifically, the parameters are ǫ = 0.21,
ǭρǭn = 0.001, s = 0.8, q0 = 2.5, τ0 = 1, η̄i = 4, η̄e = 1,
kθρi0 = 0.3. Note also that, within the current regime of
parameters, we have found that it is sufficient to keep the
three harmonics p = 0,±1 for the most unstable eigen-
states.
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FIG. 1: (Color online) Plots of poloidal mode structures
for the toroidicity-induced (a) and slab-like (c) modes.
Corresponding radial mode structures of the three

poloidal harmonics, p = 0 (green), p = 1 (red), p = −1
(blue), are plotted in (b) and (d). The solid (dashed)

lines are for the real (imaginary) components.
δ̄ = 4.15692. Space coordinates of the poloidal plane are

normalized to the minor radius.

We start from the weak plasma non-uniformities case
with δ̄ = 4.15692. The mode structures are plotted
in Fig. 1, from which we can identify two types of
unstable eigenmodes corresponding to the slab-like and
toroidicity-induced modes [8]. As expected, the poloidal
mode structure of the toroidicity-induced mode exhibits
the usual ballooning structure, with the intensity peaking
outward around θ = 0. The poloidal harmonics, mean-
while, tend to peak about the corresponding mode ratio-
nal surfaces.
As δ̄ decreases, the poloidal mode structures begin

to lose the ballooning characteristics and the intensities
peak away from θ = 0; as shown in Fig. 2a, 2c. The
poloidal harmonics are plotted in Fig. 2b, 2d. It can be
seen that, as the profile becomes sharper, the harmonics
peak away from their own mode rational surfaces and be-
come radially localized near the maximum of the diamag-
netic frequency ω∗i. Essentially such a phenomenon aris-
es because the potential structure Q is modified by the
strong plasma non-uniformities. For sufficiently strong
plasma gradients with δ̄ < 1, the toroidicity-induced
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FIG. 2: The same as Fig. 1, except δ̄ = 1.2.
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FIG. 3: (Color online) Plots of the poloidal mode
structure (a) and radial mode structures of the three
poloidal harmonics (b) for the slab-like mode with

δ̄ = 0.734847. The rest is the same as Fig. 1.

mode disappears. Fig. 3 shows that the slab-like mode
is localized within a narrower strong plasma gradient re-
gion, along with a shorter radial correlation length. We
note that the above features are consistent with the re-
sults of gyrokinetic simulations [1–3].
In Fig. 4, we plot the eigenvalues of ITG-DWIs as a

function of δ̄. It clearly illustrates that the toroidicity-
induced and slab-like modes co-exist for the weak plasma
non-uniformities (δ̄ > 0.96) with similar growth rates,
but very different real frequencies, and the toroidicity-
induced mode is more unstable. However, for smaller δ̄,
the toroidicity-induced mode disappears, and the slab-
like mode becomes the most unstable mode. Thus, the
qualitative change in the poloidal mode structure as δ̄
varied is associated with the change of the most unstable
eigenmode branch. To further verify that the dominant
unstable mode is slab-like in the small δ̄ regime, we have

solved Eq. (2) in the slab limit by dropping the poloidal

coupling term Ĉ. The corresponding eigenvalues are also
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FIG. 4: (Color online) Normalized eigenvalues Ω versus
δ̄ for toroidicity-induced (green), slab-like (blue), and
slab limit (red) modes. The solid (dashed) lines are for

the real frequencies (growth rates).

plotted in Fig. 4, and they coincide well with those of
the slab-like mode.

To summarize, we have derived a two-dimensional ki-
netic eigenmode equation for the ion temperature gradi-
ent driven DWIs in the strong plasma gradient region of
toroidal plasmas. It is found that the strong plasma gra-
dients can significantly modify the corresponding poten-
tial structures and, as a consequence, the slab-like eigen-
modes, which are predominantly bounded by the plasma
non-uniformities, become the dominant unstable modes.
Numerical solutions show that the corresponding poloidal
mode structures can peak away from the outboard mid-
plane. Individual poloidal harmonics, meanwhile, local-
ize away from their own mode rational surfaces, and have
shorter radial correlation lengths. The obtained results
are found to be in qualitative agreement with the recent
gyrokinetic simulation observations [1–3].

Finally, as the present results are due to the modifi-
cation of the potential structures by the strong plasma
non-uniformities, we remark that even though the em-
phasis is placed on the ITG modes in this study, the
results are expected to also hold qualitatively for other
types of DWIs.
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