Parity-breaking parametric decay instability of kinetic Alfvén waves in a nonuniform
plasma
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We demonstrate that, in a nonuniform plasma, the parametric decay instabilities of kinetic Alfvén
waves could be quantitatively and qualitatively different from that in a uniform plasma. Specifically,
for the decay via nonlinear ion Landau damping, the bare-ion Compton scattering is found to
dominate over the shielded-ion scattering, and is, typically, an order of magnitude larger than that
in a uniform plasma. Furthermore, the parity of the decay kinetic Alfvén waves is broken; leading
to finite net wave momentum transfer and, consequently, additional convective plasma transport.
Excitations of unstable eigenmodes due to a localized pump wave are also presented.
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Shear Alfvén wave (SAW) is a fundamental electro-
magnetic wave in magnetized plasmas existing in both
nature and laboratories [1]. Due to intrinsic plasma
nonuniformities, SAW frequency w = k|Va is spatially
dependent and constitutes, thus, a continuous spectrum
[2]. Here, kj is the wavenumber parallel to the back-
ground magnetic field, By, and V4 = By/v/4mp,, is the
Aflvén velocity with p,, ~ N;m; being the mass density,
N; being the ion density and m; being the ion mass. As
a consequence of spatial phase mixing, SAW is shown to
mode convert into short-wavelength kinetic Alfvén waves
(KAWSs) [3, 4]. Since there is a significant component
of parallel electric field, KAWSs are expected to play im-
portant dynamic roles; such as acceleration, heating and
transport of charged particles [5-8]. Noting that the
wave-induced phase-space dynamics depend crucially on
the detailed wave spectrum, nonlinear wave-wave interac-
tions such as the important three-wave parametric decay
instability (PDI) has been investigated since the early
discovery days of KAW [4, 9]. Previous theoretical stud-
ies have, however, been limited to the case of a uniform
plasma [4, 9-11]. In this Letter, we employ the nonlinear
gyrokinetic theory [12] and demonstrate that, in a realis-
tic plasma with nonuniformities, the PDI of KAW could
be both quantitatively and qualitatively modified from
that in a uniform plasma.

Let us consider, for the present analysis, the simplified
slab model with a density profile N (z), constant temper-
atures, 7 = T, /T; ~ O(1), and the thermal to magnetic
pressure ratio f < 1. The equilibrium magnetic field
By = BOB can, thus, also be approximated as being uni-
form. Meanwhile, the equilibrium distribution function
is taken to be a local Maxwellian Fj;. With the com-
pressional Alfvén waves being suppressed due to the fre-
quency separation and 3 < 1, we then have §(B%/2) ~ 0

*Email: zqiu@Qzju.edu.cn

and the suitable field variables are d¢ and dA ~ 5AHE"
Here, 6¢ and JA are, respectively, the scalar and vector
potentials, along with the Coulomb gauge V - 6A = 0
and b = 2. The perturbed distribution function, f; for
species j = e, i, then is given by [12]

3f; = —(a/T);Farj06 + exp(—p; - V)og;, (1)

with p; = v xb/Q;, Q; being the ji,— species cyclotron
frequency, and &g satisfying the nonlinear gyrokinetic
equation [12]

(0r +vyb - V + (dug) - V) bg;
= (q/T);Fuj (0r +iwsj) (0Lg j)a- (2)

Here, Ly ; = exp(p; - V)(0¢p — v dA) /c) with (A), de-
notes gyro-phase averaging of A, (dug)a = (c/BO)E) X
V(6L, j)a and w.; = —i(cT/qB);b x VIn N - V. From
now on, we will drop the subscripts “j” when possi-
ble in order to simplify the notations. In the present
analysis of finite small-amplitude fluctuations, we let
6g = 69" + 6g? with superscripts “(1)” and “(2)” de-
noting, respectively, the linear and nonlinear responses,
and solve dg via successive expansions. The governing
field equations, meanwhile, are the quasi-neutrality con-
dition -, ¢;(0f;) = 0 with ((--+)) = [ d®v(---) denoting
the velocity-space integration; i.e.,

> (Nog®/T);60k = Y a5 ((Jod9);) , (3)

Jj=e Jj=ei

and the nonlinear gyrokinetic vorticity equation [13, 14]
ik 8Tk + (Noe® /Ti) (1 = Ti) (9 + iwsi) S
= b’ x K (6A) 0]} — 6A) k0] 1) /Bo
- (BC/B())B . k// X kl <[(Jka/ — Jk")éLk’égk”,i
—(JkJ " — Jk’)(SLk”(Sgk’,iD . (4)

In Egs. (3) and (4), Jo(kip) = (exp(p - V))o with
k3 = —V? being an operator, 6.J = —(c/4m)V3 64y,



Ty = (Jg(kLpi)Fari/No) = Io(bi) exp(=bi), bi = k73 p7;
with py = vy;/Q; being the Larmor radius defined with
ion thermal velocity, Iy being the modified Bessel func-
tion, and Jo(kipe) ~ 1 since |k3 p?| < 1. The two
terms on the right hand side of Eq. (4) are respectively,
the Maxwell and generalized gyrokinetic ion Reynold
stresses.

We now consider the nonlinear couplings between three
waves, @, Q_ and Q. Here, 2y = [wo, ko(x)] is the
pump KAW wave, Q_ = [w_,k_(x)] is the decay KAW,
and Q; = [ws, ks(2)] is the electrostatic drift-sound wave
(DSW). Note the frequency and wave vector matching
conditions dictate wy, = wo + w— and ky(x) = ko(z) +
k_(z). As Qg and Q_ are KAW normal modes, ko(z)
and k_(z) are WKB wave vectors determined by the
local linear KAW dispersion relation to be shown later.
In particular, we take 2y to be a mode-converted KAW
and, hence, k| g ~ k; o(z)%. Since 7 ~ O(1) and our
current focus is on the quasi-mode decay via nonlinear
ion Landau damping, we have, as in the uniform case,
s 2 [k sl <€ fo] ~ .

The rest of the theoretical analysis is then straightfor-
ward and follows that of Ref. 10 for the uniform case.
We, therefore, will omit the details and present only the
major results. For the @ mode, we have, from Eq. (2),
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Ao (4 kjjo) — wsi
698 =i (£) Fari |50 g g 66000 (6
9ui =1 ), Fu o $od¢—. (6)
Here, J;, = Jo(kip), ALY, = (¢/By)b-k’ xKk', and we have
assumed, in deriving Eq. (6), |kjv);/w| < 1 for the Qg
and ©_ KAW modes. Meanwhile, since |w/(kjve)| < 1
for all the three modes, one readily finds 5g§712 ~ 0, and
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Here, 0vp = (wdA)/(cky))r is the effective potential due
to the induced parallel electric field —0;0A) /c. The
quasi-neutrality condition, Eq. (3), then yields, for the
Q, mode,

Eandps = i(AG/wo) 166066 -, ®)
where €, is the linear DSW dielectric constant
€sx = 1+ 7+7T5(1 — wiy/w)s&s Zs, (9)

with & = ws/|k) sviil, Zs = Z(&) is the plasma disper-
sion function,
B = G061[1 — (kyo/ky) (wee/w) -]
+7F [l—i—(l—w*i/w)sstsL (10)

F1 = <J()JSJ,F‘]wl‘/]\/v(ﬁ7 (}k = [1 + 7 - Trk(l —
Wai /W)k]/(1 — Wye/w)k. In deriving Egs. (8) and (10),
we have noted dyy =~ 650¢ from the linear KAW wave
properties.

Next we consider the decay KAW €2_ mode; including
nonlinear couplings between €2y and €,. Noting that 2,
is a quasimode, hence, both Jggl) and 5g§2) need be kept
on the same footing. For electrons, one can then straight-
forwardly derive 6g9,)e ~ (—e/Te)Fare(l — Wie/w)_d1p—

and
2
Ai e k 0
) (2) ~ 0 F . Il,
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Meanwhile, for ions, we have 69(_17)1- ~ (q/T)iFpri(1 —
Wi Jw)—J_d¢p_, and

@ . _Ao|re Ry — i .
69_’i B ! wo (T)1 FMZ ( kH’UH — W )S J0J56¢06¢8
—~Jo68369)] (12)

Here, ¢ 9;22 is given by Eq. (6). The corresponding quasi-
neutrality condition, Eq. (3), then yields

S = (&, n &(3)|5¢0|2) 56— + (A7 Jwo)D106s56%(13)

here, 67 = (Ay /wo)*{T[1 + (1 — wei/w)sbsZe)Fs —
(yo/ Ky, =)L = (ky 0/ ky ) (Wie /w) 1686 -}/ (1 = e fw) -,
Fy = (J2J2Fui/No), and Dy = 7R[1 + (1 —
i )€ Zs) [ (1 = wae ) -

The gyrokinetic vorticity equation, Eq.
while, becomes

(4), mean-

7h_ [(1 — wii/w)_ (1 —T_)6¢_ /b_ — (kyVa/w)2 e
+a2 1600256 | = ~i(A /w0)3 86,567 (14)

Here, &) = (Ay /wo)?(Fo—F1)[1+ (1 —w.i/w) s Zs] b,
and ’A}/Q = T{Fl[l + (1 — w*i/w)sgsZs] - FO — Fs(l —
wyiJw)s€sZs}. In deriving Eq. (14), we note that, since
€, is an electrostatic mode, the Maxwell stress, i.e., the
first term on the right hand side of Eq. (4), makes negli-
gible contribution. Substituting Eq. (13) into (14) then
yield the following equation describing €2_ generation by
Qo and Qg;

b (Ea + e 15602) 66— = ~i(A /wo) B206,063(15)

where €4 = (1 —wyi/w) (1 =T_)/b_ — (k) Va/w)

is the linear local KAW dielectric constant, éfi

(kyVa/w)26®), and By = 42 — 7b_ (kyVa/w)2 Dy.
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Equations (8) and (15) are the coupled equations be-
tween Q, and €_, and yield the desired WKB dispersion
relation for KAW PDI;

€aslEa— +uXa—|060[*] = C_|ogo|?, (16)
where €, is given by Eq. (9),
Xa- = (Ag fwo)*(F = F/Ty)/(rTsb-6-),  (17)
and

C_ = (Ag /wo)? (606- — Fiog/Ty)
X {&0&_ <1 - k'“”) - Flias] . (18)

kjs w- s

with oy =14+ 7 — 7.

In deriving Eq. (16), we have ignored terms contribut-
ing to nonlinear frequency shift in order to concentrate
on the stability properties, and noting €2_ being a normal
mode, letting (kVa/w)? ~ (1—w.i/w)-(1-T_)/(b_5_)
in the nonlinear terms.

Focusing on the quasi-mode decay via nonlinear ion
Landau damping, we then obtain, from Eq. (16), the
following stability condition

. c .
XA— + |€|2‘| ‘6¢0‘2Im(€s*)(19)

In Eq. (19), 7 is the PDI growth rate, v4— is the lin-
ear damping rate of €_ normal mode, and the sub-
script “R” denotes the real part. Meanwhile, y 4 and
C_ correspond, respectively, to the bare-ion (Comp-
ton) and shielded-ion scatterings. Noting that x4— and
C_ are generally positive, instability thus sets in when
Im(égy) > 0, i.e., noting Eq. (9),

0éa_r
Ow_

(V+7d)’

(W, R — wai,s)IM[Z(E5)] > 0. (20)

The nonlinear ion Landau damping (or ion-induced scat-
tering), thus, maximizes when |§;| = |ws/ (k) sve)| >~ 1
for maximized Im(Zs), ws, g > 0, and wy; s < 0. wsr >0
and wy;s < 0 correspond, respectively, to downward
frequency cascading and €2 propagating in the elec-
tron diamagnetic drift direction (or k,s > 0 in the
present slab model). Noting that while wy, g > 0 is
the same as in a uniform plasma considered previously
4, 9-11], wys < 0 (kys > 0) is solely due to the
plasma nonuniformity (VNN # 0) in the present nonuni-
form model. Furthermore, noting that both y4_ and
C_ peak around ki spi ~ O(1), we have, typically,
|wai,s/ws| ~ |k sLy|™t > 1 with Ly' = |[VN/N| and
|€ss| ~ |wsis/ws| > 1. That is, in Eq. (19), the bare-ion
Compton scattering dominates over the shielded-ion scat-
tering and the PDI growth rate is O(|k sLy|™") larger
than that in a uniform plasma.

In addition to enhancing the PDI growth rate, that
the decay instability maximizes for w,; s < 0 (ky,s > 0)

also has a significant implication to the plasma trans-
port processes. Considering the particle flux induced by
the ©_ decay KAW, we have 'y = T',c + I'yq [8, 15],
where I',. and I';4 are, respectively, the convective and
diffusive components in the nonuniformity z-direction.
We note, furthermore, I'y. o< >, kywyi|0dx|? and T'yg o
> k2106k|?, where the k, dependence indicates that the
guiding-center transport is due to the symmetry-breaking
of the P, = mv, + eA,/c generalized momentum. In a
uniform plasma, with k; o = k; 0X, the decay process
possesses parity in ky; i.e., the PDI growth rates are the
same for +k,; which implies |§¢_(ky)|? = |d¢_(—Fk,)|?.
This ky-parity then dictates that there is no net k, wave
momentum transfer, and from total momentum conser-
vation, I';. ~ 0; i.e., the transport is mainly due to I',4.
On the other hand, in a nonuniform plasma, Q_ decay
KAW maximizes for k, _ ~ k, ; > 0; i.e., £_ propagates
in the ion diamagnetic drift direction, and the k,-parity
is broken. T'y. is, therefore, finite and generally compa-
rable to I'4.

Finally, we remark that while the WKB analysis sug-
gests that the Q_ decay KAW is convectively unstable,
the nature of nonlinear coupling and the localization of
Qo pump intensity, as will be shown below, could ren-
der ©2_ as an absolutely unstable eigenmode. Let |0¢|?
peak at x = 0 with a localization width Ag. For a mode-
converted pump KAW g, we have Ag ~ O(p?Ly)"/3;
i.e., the Airy scale length [4]. With, typically, p;/Ln ~
O(1073), then |A¢/Ln| ~ 1072 < 1. Furthermore, since
the nonlinear coupling maximizes for k; _ 1 k, o via
|Aa| x |kJ_’7 X kJ_,Ol and |€S*| ~ O(|/€”7SLN|_1) > 1, Eq.
(16) then yields the following wave equation for € _

2

{p?
X

Hr OO0 (1- 53 )] 4-0) =01 2)

0éa_r

8(,&),0

Oéa_ 9? .
(,;)’R’ Freie (dw + iv4-) ‘

where we have noted d¢_ = A_(z)explik, _y +

iky—z], k2. > |0%/02%, w. = w. + Ow,
éa-r(w_o0,ky—,kj—,x = 0) = 0, and approximated

6¢h0|2(x) = |Ao|2(1 — 22/AZ). Also, the equilibrium pa-
rameters can be approximated by the values at = = 0.
Eq. (21) then readily gives the condition for the absolute

unstable eigenmode as
_ e (71’) (22)
wo wo / ’

where 7, /wo = |Ao[*Xa—(0)Im[és. (0)], and (v,/wo)in =
[ Aol (pi/A0)\/10€a— = /Ob_[xa—(0)Im[\/:.(0)]. Physi-
cally, that instability sets in when 7, > 7+, means
that ©_ wave packet gets sufficiently amplified when

it reaches the turning point zp located at 2. =

(Do) 192a—r /5| /| K a_[]/2/| Ao]. Taking, as typ-
ical tokamak parameters, [Q;/wo| ~ O(10%), B ~

0€a_r
8&1_0

W+w)‘




O(1072), |wai,s /Ky sv0] ~ O(10) for |ky _pi| ~ ky spi ~
O(1), [a—fwol ~ O(1072) and pi/By ~ O10°),
the threshold amplitude in terms of [6B, o/By| is
|6B1.0/Bolin ~ O(10~*); which is compatible with fluc-
tuation amplitudes observed in tokamak experiments
[16].

In summary, it is found that, in a nonuniform plasma,
the parametric decay instability of kinetic Alfvén waves
via nonlinear ion Landau damping could be quantita-
tively and qualitatively different from that in a uniform
plasma. Not only the ion Compton scattering rate is en-
hanced by, typically, an order of magnitude, but also the
parity of the decay waves is broken; leading to, in ad-
dition to the usual diffusive component, a finite convec-
tive component of the transport flux. We, furthermore,
demonstrate that, due to the radial localization of the
pump, the decay KAW forms an absolute unstable eigen-
mode and the required pump threshold amplitude is con-
sistent with experimental observed fluctuations. Noting
that, while the present analysis adopts a slab model with
only density nonuniformity in order to simplify the anal-
ysis and illuminate the underlying physics processes, the
results obtained here can be expected to be also applica-
ble in realistic plasmas; such as tokamaks. It will be inter-
esting and, in fact, desirable to explore how these physics
effects affect the nonlinear evolution and eventual satu-
ration of Alfvén eigenmodes; e.g., toroidal Alfvén eigen-
mode [17-19] excited by energetic particles in tokamak
fusion plasmas.
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