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Abstract

Using the theoretical framework of the generalized fishbone-like dispersion relation, the linear

properties of beta-induced Alfvén eigenmodes (BAEs) and energetic particle continuum modes

(EPMs) excited by anisotropic slowing-down energetic ions are investigated analytically and nu-

merically. The resonant contribution of energetic ions to the potential energy perturbation as well

as fluid-like term describing the background plasma and adiabatic contribution of energetic ions

are derived. For high-mode numbers, numerical results show smooth transition between the EP

continuous spectrum and BAEs in the gap. EPMs and/or BAEs are destabilized by energetic ions,

with real frequencies and growth rates strongly dependendent on the energetic particle density and

resonant frequency.
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I. INTRODUCTION

Proper understanding of the shear Alfvén wave (SAW) interaction with energetic particles

(EPs) produced by auxiliary heating or nuclear fusion reactions in tokamaks is necessary

for achieving better confinement of the latter, since resonant wave-particle interactions can

destabilize the Alfvén modes, which, conversely, can cause significant fast-ion redistribution

or loss, and as a result substantial damage to the containment vessel [1–5]. Sizable portion

of the research on toroidal plasmas, both experimental and theoretical, has been dedicted to

this very topic [2, 6–11]. Beta-induced Alfvén eigenmodes (BAEs) are particularly important

since they can strongly interact with both thermal ions and EPs [5, 12–16].

Beta-induced Alfvén eigenmodes have typical frequencies located below the shear Alfvén

continuous spectrum in a frequency gap caused by the finite thermal plasma compressibility

[5, 17, 18]. Experimental evidence of destabilization of the BAEs by energetic beam ions

was first observed by Heidbrink on D-IIID tokamak [19]. Subsequently, BAEs have been

observed in Ohmicaly heated plasmas in absence of energetic ions [20, 21], as well as plas-

mas heated by ion cyclotron [16, 22] and electron cyclotron resonant heating [23]. Recent

numerical simulations have also shown BAE excitation by EPs [24–26]. General theoretical

framework, a so-called generalized fishbone-like dispersion relation (GFLDR) [2, 5–7, 27–

30], has been developed to describe the various Alfvénic fluctuations in tokamak plasmas

observed in experiments and numerical simulations. EP continuum modes (EPMs), which

are eigenmodes intrinsic to the presence of EPs and can’t exist without a fair amount of EPs,

have also been described by the GFLDR [2]. Using a general mode structure decomposition

[31] and the WKB asymptotic matching method [8], the GFLDR can be expressed in a form

of an energy functional

D(ω) = −iΛ(ω) + δWf + δWk(ω) = 0, (1)

where ω = ωr + iγ is the complex frequency of the mode, with ωr and γ the real frequency

and growth/damping rate, respectively. Λ represents the inertial term and its form depends

on the relevant physics inside the inertial layer, while δWf and δWk are the fluid-like and the

EP kinetic terms, respectively [2, 5, 7]. δWf is a real function of the equilibrium parameters,

whereas δWk depends on ω and the characteristic frequencies of EP motion. The real part

of δWk accounts for the non-resonant EP response, while the imaginary part comes from the
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resonant wave-particle interaction, and provides the instability mechanism necesary for the

existence of EPMs, which are entirely determined by the EP characteristic quantities [2, 7].

The BAE dispersion relation is one limiting case of the GFLDR [5, 15, 28]. Aside from

diamagnetic effects, kinetic descriptions of low frequency Alfvén modes have so far included

wave-particle resonances with circulating thermal ions [5, 28] as well as deeply trapped

ions and electrons [15, 32]. The simulations of BAEs excited by EPs have been limited to

isotropic slowing down or Maxwellian distribution functions [24, 25]. However, EPs gener-

ated by neutral beam injection (NBI) heating are better described by anisotropic slowing

down distribution function. In this paper, we analytically and numerically consider BAE and

EPM excitation via transit resonance with hot ions generated by NBI heating in toroidal

systems. Both the fluid-like and energetic particle terms are obtained analytically. Nu-

merically solving the GFLDR we find that the EPMs and BAEs are destabilized by the

circulating energetic ions via transit resonance for different sets of parameters: the energetic

ion characteristic velocity υE and τ = Te/Ti where Te and Ti are electron and ion tempera-

ture in energy units, respectively, and there is a smooth transition from the continuum EPM

spectrum to the beta induced gap when these parameters are changing. Linear stabilities

of EPM and BAE in the presence of anisotropic energetic ions are investigated, showing

that for EPM the real frequency and growth rate increase with τ , υE and energetic ion

density nE, with the latter one having a threshold for excitation of EPMs. For BAE the

location of the real frequency inside the gap is determined by both the core plasma τ [5]

and energetic ion (velocity and density). The growth rate of BAE is mainly increasing with

the energetic ion density or velocity, although some drive is necessary to overcome the finite

Landau damping.

The paper is organized as follows: In Sec. II we present the BAE dispersion relation

and the derivation of the relevant terms in the GFLDR. Numerical studies of the analytic

dispersion relation of BAEs in the presence of moderate spatial gradients of the EPs with

anisotropic slowing-down distribution are presented and discussed in Sec. III, with emphasis

on the effects of EP density and velocity. We also give a brief discussion on the identification

of continuum mode and the gap in the light of the GFLDR. Conclusions are given in Sec.

IV.
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II. DISPERSION RELATION

An equilibrium with shifted circular flux surfaces, large-aspect ratio ε = a/R0 ∼ O(10−1)

with R0 and a being the major and minor radii, respectively, and high-β (= 8πP/B2 ≈ ε

where P is the plasma pressure and B the equilibrium magnetic field) is adopted. The equi-

librium is entirely determined by a set of parameters (s-α) [33], namely the average magnetic

shear s = rq′/q, and the normalized pressure gradient α ≡ −R0q
2β′, where q is the safety fac-

tor, r is the radial coordinate and the prime denotes derivation with respect to r. We assume

the plasma consists of two components, a relatively cold fluid-like background plasma with

isotropic Maxwellian particle distribution, and an EP component with anisotropic slowing

down distribution. For the modes of interest in this paper we adopt the following frequency ω

and wavelength k orderings [7]: ω ≈ ω∗pi ≈ ωti ≈ O(ε1/2)ωA (ωA = υA/qR0), kϑρLi ≈ O(ε),

kϑρLE ∼ O(ε1/2). Here, kϑ is the wave vector in the poloidal direction, ρLi and ρLE the ther-

mal and energetic ion Larmor radii, respectively, ω∗pi = (cTi/eiB
2)(k × B) · ∇ lnPi is the

thermal ion diamagnetic frequency, ωti =
√

2Ti/mi/qR0 the thermal ion transit frequencie,

ei and mi the ion electric charge and mass, respectively, Pi the thermal ion pressure and k

the wavevector.

Within the present model, the plasma is described by two variables [5]: the perturbed

scalar potential δφ and the vector potential δψ, related to the perpendicular magnetic field

as δA‖ ≡ −i
(
c
ω

)
b · ∇δψ where b = B/B. Here, we assume the parallel magnetic field per-

tubation is negligible, i.e., δB‖ = 0 [34, 35]. Standard procedure [5, 36], beginning with the

gyrokinetic and quasi-neutrality equations and adopting the ballooning mode formulation,

leads to the so-called vorticity equation in terms of the extended poloidal angle θ [37][
∂2

∂θ2
+Λ2+

α cos θ

f
− (s− α cos θ)2

f 2

]
δΨ−f−1/2

〈
4πeEq

2R2
0

k2
ϑc

2
J0(λρE)ωωdEδKE

〉
υ = 0 (2)

where δΨ = f 1/2δψ, f = 1 + (sθ − α sin θ)2 and we have assumed the validity of ideal

MHD approximation δφ = δψ [2, 5, 7]. In Eq. (2), ωdE is the magnetic drift frequency of

EP with ωdE = kϑΩdEg(θ), ΩdE = (υ2
⊥/2 + υ2

‖)E/ωcER0, g(θ) = cos θ + (sθ − α sin θ) sin θ,

J0 is the Bessel function of the first kind and zero index, with argument λρE = k⊥ρLE,

k2
⊥ = k2

ϑ+k2
r , ρLE = υ⊥E/ωcE, ωcE = qEB/mEc, qE and mE are the electric charge and mass

of the energetic ions, 〈...〉υ = 2π
∑
σ=±1

∫
dεdµB/|υ‖| with σ = υ‖/|υ‖|, ε = υ2/2, µ = υ2

⊥/2B,

the subscripts ‖ and ⊥ represent parallel and perpendicular components always refer to
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the direction of the equilibrium magnetic field b. Compressional effects from both the core

and energetic components are included in the above equation, while for the expression of

Λ we use the form derived in Ref. 5, in which both thermal ion transit resonances as well

as diamagnetic effects (finite ω∗pi) are maintained. The non-adiabatic EP response δKE is

governed by the following gyrokinetic equation [34, 38, 39]

[
ωtE

∂
∂θ
− i(ω − ωdE)

]
δKE = i eE

mE
QF0E

ωdE

ω
J0(λρE)f−1/2δΨ (3)

where ωtE = υ‖E/qR0, QF0E = (ω∂ε + ω̂∗E)F0E, ω̂∗EF0E = ω−1
cE (k×b) ·∇F0E and F0E is the

EP equilibrium distribution function.

Equation (2) is obtained in the long wavelength limit kϑρLi � 1, assuming adiabatic

electron response (δKe = 0). We treat EPs dynamics nonperturbatively and consider the

finite orbit size effects. We also neglect EPs density nE, but keep its pressure PE, which is

comparable to that of the thermal ion, consistently with a nonperturbative approach. Note

that the MHD adiabatic EP compression enters Eq. (2) via the equilibrium parameter α,

whereas the kinetic non-adiabatic EP compression (last term in Eq. (2)) contributes to the

vorticity equation by coupling the pressure perturbation via the magnetic curvature drift

[36].

Equation (2) exhibits two-scale-length structure, i.e., the function δΨ varies on a small

angle θ0 ≈ 1 and a large angle θ1 ≈ 1/β1/2 [5]. For kϑρLE <∼ 1, the finite Larmor radius

(FLR) and finite orbit width (FOW) effects of the energetic ions are negligible in the inertial

layer θ ≈ θ1 because of orbit averaging effects, whereas the same contribution can be finite

in the ideal region θ ≈ θ0. The local BAE dispersion relation in the presence of energetic

ions (Eq. (1)) is derived by asymptotically matching the solutions of the eigenmode Eq. (2)

in the inertial layer and the ideal region [5].

A. The energetic ion term δWk

The total contribution of the EPs to the GFLDR can be written as δWE(ω) = δWf,E +

δWk(ω), where the δWf,E term represents the adiabatic and convective responses [6] which

enters the usual fluid-like term δWf in the form of ξ ·∇PE, with ξ being the plasma displace-

ment. On the other hand, δWk is a nonadiabatic contribution and for circulating particles
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is given by [7]

δWku '
π2q2

Eq
2R2

0

2mEc2s

〈
QF0EΩ2

dE

∆(1 + ∆2)3/2

ω

ω2
tE − ω2

〉
υ

, (4)

where ∆2 ≡ k2
ϑ(ρ2

LE + ρ2
dE/2)/4 contains the FLR and FOW (ρdE = ΩdE/ωtE) effects of

the EP. In the present work we mainly consider 4 � 1, since it is the most unstable wave

vectors range [2, 7].

In order to model the NBI generated energetic ions we choose a symmetric in υ‖ slowing-

down beam ion distribution function, with a single pitch angle (λ = µ/ε)

F0E =

√
2(1− λ0B0)B0βE(r)

25π2mE(εb − εc)
δ(λ− λ0)

ε
3/2
c + ε3/2

, (5)

where βE ≡ 2µ0PE/B
2
0 , δ(x) is the Dirac function, λ0 is the energetic ion birth pitch angle,

ε ∈ [εc, εb], εb and εc are the birth (maximum) and critical energies of EPs, respectively.

For burning plasmas εc � εb [40], but we have kept εc in Eq. (5) for consistency with the

numerical codes [41, 42].

Substituting Eq. (5) into Eq. (4) we obtain

δWku = παE(1−λ0B0/2)

2
√

2s(1−1/nbc)
· ω̄
[
2
(
1− 1/

√
nbc
)
− ω̄ ln

(
ω̄+1
ω̄−1

)
+ ω̄ ln

(√
nbcω̄+1√
nbcω̄−1

)]
, (6)

where αE ≡ q2R0β
′
E, ω̄ = ω/ωtm with ωtm being the transit frequency at the maximum

particle energy, and nbc = εb/εc. Here, we have neglected the velocity space damping due to

energetic ions and considered that the EP drive comes mainly from the pressure gradient in

the real space, i.e., ω̂∗E � ω. Furthermore, only the EP FOW effect is kept since ρdE � ρLE.

Equation (6) implies that resonance occurs when the frequency of the mode is close to the

transit frequency of the EPs, and the source of the instability is related to radial pressure

gradient contained in αE.

B. The fluid-like term δWf

The expression of δWf is given in Refs. 2, 5, and 7 for thermal plasma component. This

term, however, should include both core-plasma δWfc and EP pressure contribution δWfE in

the presence of energetic ions. The MHD non-adiabatic particle compression (MPC) term,

contributing to δWf , can be expressed as [36]

MPC =
4π

B2k2
ϑ

∑
s=i,E

〈
k× b · ∇̃(Ps‖ + Ps⊥)Ωκδψ

〉
s
. (7)
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For thermal plasma with isotropic Maxwellian distribution we assume Pi‖ = Pi⊥, while

for passing EPs created by parallel neutral beam injection, PE‖ � PE⊥ and ηE =

∂ lnTE/∂ lnnE = 0, i.e., the temperature of energetic ions is flat. Transforming Eq.

(7) to the ballooning space, the MPC term can now be written in a more convenient

form: αg(θ)/q2R2
0, where α = αc + αE, αc = (1 + τ)(1 + ηi)q

2βi/εni for the core plasma

and αE = q2βE/εnE for energetic ions. Here, ηi = ∂ lnTi/∂ lnni, εni = Lni/R0, and

εnE = LnE/R0 with Lni and LnE the density gradient scale lengths of the thermal and

energetic ions, respectively.

The solution for the eigenfunction δΨ in the ideal region has to asymptotically match the

inertial layer solution δΨ ∼ eiΛ|θ|. The expression for the fluid-like term is given by [7]

δWf =
1

2

∫ ∞
−∞

dθ

{∣∣∣∣dδΨdθ
∣∣∣∣2 +

[
(s− α cos θ)2

f 2
− α cos θ

f

]
|δΨ|2

}
. (8)

Adopting the trial function δΨ = 1 + α cos θ/f and assuming |s|, |α| < 1, straight forward

algebra yields

δWf '
π

|s|

[
s2

4
− 3α2|s|

2
+

5α2s2

32
+

45α4

128
−
(

1 +
α

2

)
e−1/|s|

]
, (9)

where in the integration we have adopted f ≈ 1 + s2θ2 and neglected the oscillatory terms

∝ cosnθ with n = 2 or 3. The term proportional to e−1/|s| comes from cos θ related term

and is a result of overlapping space scales sθ and cos θ. This term is accurate near the first

stability region, where |s| ∼ α2 for small |s| and α. The low order terms in Eq. (9) are very

close to those obtained in Ref. 43.

III. NUMERICAL RESULTS

We numerically solve the linear dispersion relation Eq. (1), where δWk and δWf are given

by Eqs. (6) and (9), respectively, while for Λ we use Eq. (19) of Ref. 5. Based on Eq. (1),

we identify two types of modes: EP continuum modes with Re(Λ2) > 0 and discrete gap

modes with Re(Λ2) < 0 . The EP continuum modes experience strong continuum damping

and require suffiently strong EP drive. On the other hand, the gap modes are weakly

coupled to the continuum and only require a small drive from the energetic particles and/or

thermal ions to compensate the Landau damping [14, 27]. Since the SAW accumulation

point is given by Λ2 = 0, the transition between the continuum and the gap occurs around
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FIG. 1. (a) Real (solid line) and imaginary (dashed line) values of δWku as a function of Re(ω/ωti).

(b) Values of Re(δWku) + δWf are shown as a function of Re(ω/ωti). Here, Im(ω/ωti) = 0.001,

vEi = 5.0, nEi = 0.01, and τ = 1.0.

Re(δWku)+δWf ' 0. The real frequency of the EPM is located on the continuum spectrum,

while the growth rate is given by [7]

Im(ω/ωti) '
Im(δWku)− ReΛ

−∂Re(δWku)/∂Re(ω/ωti)
, (10)

where Im(δWku) describes the energetic particle drive and ReΛ the continuum damping. The

threshold condition is thus Im(ω/ωti)≥ 0 for Im(δWku)≥ ReΛ and ∂Re(δWku)/∂Re(ω/ωti) <

0 [2, 5, 7, 30, 44]. For the BAE the condition Re(δWku) + δWf < 0 allows for the mode to

be localized inside the gap. Re(δWku) provides a real frequency shift, i.e., it removes the

degeneracy with the continuum accumulation point, while Im(δWku) privides the mode drive

and compensates for the small, but non-negligible damping from the thermal ions [27, 36].

Further in this section, we use the following values for the local equilibrium parameters

βi = 0.01, q = 2.0, s = 0.25, ε = 0.3, ω∗ni/ωti = 0.1, ηi = 2.0, ηE = 0.0, λ0B0 = 0.0,

nbc = 102, Lni/R0 = 3.0, and LnE/R0 = 0.15. We assume large ratio of beam to thermal ion

transit frequency ωtE/ωti = υE/υi = υEi = 5.0 in order to correctly estimate the importance

of the transit resonance. In Fig. 1(a), we show the value of Re(δWku) and Im(δWku) as

functions of real mode frequency. The imaginary part of δWku is positive with ω ≤ ωtm,

while the real part is positive for small values of ω/ωti, but changes sign at frequency below

the resonant energetic ion frequency, as does Re(δWku) + δWf in Fig. 1(b). In the same

figure the solution of Re(δWku) + δWf = 0 determines the location of the transit point
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FIG. 2. Frequencies (a) and growth rates (b) vs. τ for Λ2 = 0 (BAE-CAP), nEi = 0.005,

nEi = 0.0065, and nEi = 0.01. The line with crosses shows Re(Λ2) vs. τ for fixed nEi = 0.0065.

Here, δWf = 0, βi = 0.01, q = 2.0, s = 0.25, ε = 0.3, ω∗ni/ωti = 0.1, ηi = 2.0, ηE = 0.0, λ0B0 = 0.0,

nbc = 102, Lni/R0 = 3.0, LnE/R0 = 0.15, and υEi = 5.0.

between EPM and BAE. We can see δWf 6= 0 can affect the real frequency of the EPM.

The transition between EPM and BAE spectrum is shown in Fig. 2 for increasing τ from 0

to 10.0. The SAW continuum accumulation point (CAP) (Λ2=0) is given by the blue dashed

line. The other three curves characterize different values of the normalized density, nEi =

nE/ni of energetic ions. The four lines intersect around the same point Re(ω/ωti) ' 5.0,

which can be taken to be the transition between the EPM region (Re(Λ2) > 0) to the left with

frequencies above the accumulation point and BAE region (Re(Λ2) < 0) with frequencies

below the CAP. This conclusion is strictly valid for near marginal stability γ � ωr, but

since the energetic particle density hasn’t modified the real frequency significantly (see Fig.

2 (a)), the assumption is reasonable. For EPM the frequency (Fig. 2(a)) as well as the

corresponding growth rate (Fig. 2(b)) increase with τ in all the three cases, but unlike

the real frequency the growth rates are strongly dependent on the EP density nEi. It is

worth noting that the energetic particle drive becomes stronger with increasing nEi, since

Im(δWku) ∝ αE (see Eq. (6)), and Eq. (10) implies there is density threshold for the

excitation of EPM [7]. Figure 2 shows for τ = 1.0 EPM cannot exist below nEi = 0.005 which
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FIG. 3. Real frequencies and growth rates vs. τ for Λ2 = 0 (BAE-CAP), without δWf , and with

δWf . Here, nEi = 0.0065 and υEi = 5.0. The other parameters are the same as in Fig. 2.

is the threshold density for excitation of EPM. For BAE the frequencies initially increase

to certain maximal values and then decrease with τ , while the corresponding growth rates

decrease to zero. We can compare to Fig. 1(a) where the particle drive is strongest around

the resonance frequency, which is also the transition between EPM and BAE, and the region

with highest growth rate in Fig. 2(b). Above this frequency the drive is weak and the mode

eventually becomes marginally stable.

In Fig. 3 we show Re(ω/ωti) and Im(ω/ωti) versus τ with and without δWf in order to

highlight the effect of the fluid-like term δWf on the GFLDR. The blue dashed line represents

the CAP of BAE. The green solid line gives the frequency (Fig. 3(a)) and growth rate (Fig.

3(b)) of the modes without the fluid-like term, while the red line with pluses is for δWf 6= 0.

When δWf > 0, the growth rates of the modes are decreased, which is to be expected since

δWf > 0 implies stabilizing MHD effects. We also find that the transit point between the

EPM and BAE spectrum is shifted slightly up, which can be explained by Fig. 1(b) when

δWf is included.

Depending on the value of Re(δWku)+ δWf we obtain either EPM or gap mode, only one

of which can be excited for a given set of parameters. To demonstrate this, we show the

Nyquist diagrams for expression Re(D(ω)) with D(ω) = iΛ−δWku = 0, where for simplicity

we have taken δWf = 0. As shown in Fig. 4(a) for the EPM and Fig. 4(b) for BAE region,
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other parameters are the same as in Fig. 2.
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FIG. 5. Frequency (solid line) and growth rate (dashed line) of the mode vs. (a) vEi (nEi =

0.01, τ = 5.0) and (b) nEi (τ = 1.0, vEi = 3.0 for BAE (thin lines) and τ = 1.0, vEi = 4.0 for EPM

(thick lines)). Here, δWf = 0. The other parameters are the same as in Fig. 2.

in both cases the path in the D-plane encircles the origin only once, thus confirming there

is only one unstable mode in each case. With the aid of the Nyquist criterion, spurious

nonzero solutions produced by singularities of the transcendental function can be excluded.

The BAE and EPM frequencies and growth rates as functions of the energetic ion velocity

υEi and density nEi are presented in Figs. 5(a) and (b), respectively. The parameters in

Fig. 5(a), τ = 5.0 and nEi = 0.01 are kept fixed. In Fig. 5(b) for the BAE case (the thin

lines) we set τ = 1.0 and υEi = 3.0, while for the EPM case (the thick lines) τ = 1.0 and
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υEi = 4.0. The red dot lines represent the CAP of BAE for τ = 5.0 (Fig. 5(a)) and τ = 1.0

(Fig. 5(b)), respectively. The mode below the CAP is BAE, while the one above is EPM.

In Fig. 5(a), the BAE real frequency decreases with υEi in the region υEi <∼ 4.3, while the

growth rate is zero, i.e., the BAE is marginally stable. Above υEi >∼ 4.3 the BAE is driven

unstable by the energetic ions and both the growth rate and real frequency increase with υEi.

For EPM above the CAP, the frequency increases with υEi and remains near the resonance

with the energetic ions. The growth rate also increases, reflecting the ω/ωtE dependence in

Eqs. (6) and (10). In Fig. 5(b) the EPM real frequency (the solid thick line) and growth

rate (the dashed thick line) start from nEi ≥ 0.0005 which is the threshold EP density for

the parameters τ = 1.0 and υEi = 4.0, below which EPM cannot exist. The mode frequency

slightly increases towards the resonant frequency with increasing density nEi, whereas the

growth rate increases greatly. For BAE the tendency is the same as for changing υEi in Fig.

5(a).

IV. CONCLUSION

Numerical analysis of the generalized fishbone-like dispersion relation has been performed

in order to investigate the stability properties of EPMs and BAEs excited by passing ener-

getic ions produced by NBI heating in tokamak plasmas. It’s shown that there is a smooth

transition between the EPM and BAE spectrum, described by the generalized fishbone-like

dispersion relation. Both EPMs and BAEs can be linearly excited by energetic ions under

certain conditions (background plasma and energetic ion parameters), that allow for one

type of mode (BAE or EPM) to exist under those conditions. The wave-particle resonant

interaction with energetic ions is essential for the excitation of the mode. The self-consistent

fluid-like δWf term has important effects on the dispersion relation and it exerts a significant

stabilizing influence on the low frequency modes. Finally, the BAE and EPM frequencies

are always closely related to the resonant hot ion frequency, with the growth rates increasing

as υEi or nEi increase.

It should be pointed out that the present analysis is only valid to the leading order of

the WKB-ballooning formalism [5]. In higher order, the effect from θk can enter into the

dispersion relation, which will be considered in a separated paper. Furthermore, the Λ term

in the BAE dispersion relation does not include the deeply [15] and barely trapped particle

12



dynamics, nor finite Larmor radius and finite magnetic-orbit width effects [14, 45]. Even so,

our analytical dispersion relation for the BAEs excitation accounts for the essential physics

in a transparent manner.
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