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In toroidal magnetized plasmas neoclassical effects and drift wave turbulence can

induce the geodesic acoustic mode (GAM). We simulate the GAM using the gyro-

kinetic code GTS with the equilibrium plasma parameters of an experiment. The

dynamic properties of the GAM are investigated in detail, in particular its frequency

continuum, evolution of its radial wave number, and its propagation characteristics.

The simulation results are compared with that from the theoretical models. It is also

shown that the GAM radial phase velocity is proportional to the ion thermal speed,

as has been found experimentally.
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FIG. 1. Initial radial profiles of the (a) electron (or ion) density n(r), and (b) electron (Te) and

ion (Ti) temperatures.

I. INTRODUCTION

In magnetic confinement of hot plasmas, anomalous transport leading to particle and

heat loss is an important issue. Transport induced by drift wave turbulence has often been

considered as a candidate for the anomalous transport.1–3 On the other hand, it has been

found that zonal flows can be excited by, and in turn suppress, the drift wave turbulence.4–10

Zonal flow can have two branches, the low frequency zonal flow (LFZF) and the geodesic

acoustic mode (GAM). The latter is characterized by finite oscillation frequency and poloidal

asymmetry in the density perturbations. In tokamaks, due to the radial inhomogeneity of

the plasma temperature, the oscillation frequency of the GAM is not constant along the

minor radius.11 The corresponding frequency continuum can be associated with unusual

mode behavior. In this paper we analyze the frequency continuum, the evolution of the

radial mode number kr(t), as well as the radial phase velocity of the GAM. It is found that

the frequency continuum agrees well with the existing theory, as well as the evolution of the

radial wave vector of the mode. It is also found that the radial phase velocity of the GAM is

proportional to the ion thermal velocity, in agreement with the experimental observation.20

II. SIMULATION

The simulation is carried out using the gyro-kinetic simulation code GTS for tokamaks.12

As input we use the CMOD13 experimental equilibrium data, with the magnetic field, tem-

perature, and density profiles obtained using the ESC14 and TRANSP15 codes. The initial

density profile n0(r) and temperature profile Ti(r), Te(r) are shown in Fig. 1. The toroidal

magnetic field on the magnetic axis is B0 = 5.8T, the major radius is R0 = 0.67m, and the

minor radius is a = 0.22m. The simulation domain is from r/a = 0.3 to 0.9.
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FIG. 2. (Color online.) Distribution of the radial electric field Er.

Neoclassical effects such as that of the magnetic drift, etc. are included in the simulation.16

Initially the particle velocities are assumed to be locally Maxwellian. Since the initial system

is not in neoclassical equilibrium,17 an oscillating but relatively homogeneous radial electric

field Er is generated immediately after the simulation is started, as can be seen in Fig. 2 at

small times.

One can see in Fig. 2 that the self-consistent evolution towards a neoclassical equilibrium

triggers the oscillating electric field Er. Then drift wave instabilities are excited in the region

between r/a = 0.6 and 0.77, where the electron and ion temperature gradients are the largest

(see Fig. 1(b)). The dominating ion-temperature-gradient (ITG) mode grows rapidly and

the drift waves become turbulent. Simultaneously, the initial electric field oscillations become

localized to the same radial region and greatly enhanced, appearing as characteristic GAM

oscillations. In the process energy is transferred from the unstable and turbulent drift

waves to the GAM until a balance is reached. The drift wave turbulence saturates at a

level much lower than its peak value that occurred during the growth stage of the ITG

instability. That is, except for the very early stage (since the starting systems are different),

the development of the drift wave turbulence and GAM interaction is similar to the widely

accepted scenario.4–10
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FIG. 3. (Color online.) Dependence of f(τe) on Ti for Te = 4keV and q = 1.446, as obtained from

(1).

III. FREQUENCY SPECTRUM

Accounting for the radial inhomogeneity of the plasma and neglecting nonlinear effects,

one can express the GAM frequency as18

ωg = f(τe)
vthi
R0q

, (1)

where vthi =
√
Ti/mi is the ion thermal speed, R0 is the major radius of the tokamak, and

q is the safety factor,

f(τe) =

√
(7 + 4τe)

2
q

[
1 +

2(23 + 16τe + 4τ 2e )

q2(7 + 4τe)2

]1/2
,

and τe = Te/Ti is the electron-to-ion temperature ratio. Fig. 3 shows that f(τe) is only

weakly dependent on Ti. The frequency spectrum obtained from the simulation is shown in

Fig. 4. One can clearly see the dominating GAM and the ITG excited drift-wave turbulence

in the region between r/a ∼ 0.65 and 0.75. One can also see a very-low and constant

frequency regime between r/a ∼ 0.55 and 0.7, which can be attributed to the LFZF.

As the ion temperature decreases outward along the minor radius, the GAM frequency

also decreases. The frequencies obtained from the simulation and (1) are given in Fig. 5.

We see that in a small region the results from the simulation and theory agree quite

well. The discrepancy in the other regions can be attributed to, among other reasons,10 the

fact that the GAM in the simulation is nonlinear (in fact, continuously interacting with the
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FIG. 4. (Color online.) Frequency spectrum of the GAM oscillations as obtained from the GTS

simulations for the initial plasma configuration given in Fig. 1. The color code is for the relative

mode strength.
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FIG. 5. (Color online.) Comparison of the GAM frequencies obtained from the simulation and

theory. The disagreements at the smaller and large r values can be attributed to nonlinear and

boundary effects, respectively. Recall that the theory is linear and based on a collisionless model.

ITG-driven drift waves) and localized in a small region around r/a ∼ 0.7, but the theory

assumes that the GAM is linear and not radially localized.

IV. THE RADIAL WAVE VECTOR kr

Since the GAM frequency ωg depends continuously on r, the local radial wave vector kr

of the mode depends on time, i.e., kr = kr(t), as can be seen in the evolution of the density
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FIG. 6. (Color online.) (a)–(d) is the density perturbation δn/n0 at t=5, 20, 35, 50 LTi/vthi,

respectively, on the (r,θ) plane.

perturbation δn/n00 shown in Fig. 6. Here n00 = n0(0.7a) and δn ≡ n − n0(r). We can

see that the poloidal mode number is m = 1 and kr increases with time. To consider this

property in more detail, we define the initial mode phase as19

ϕ = ωg(r)t− k0r + ϕ0. (2)

As shown in Fig. 7, the initial mode vector k0 ≈ 0, so that

kr = −dϕ

dr
= −dωg(r)

dr
t, (3)

dkr
dt

= −dωg(r)

dr
. (4)

The evolution of the radial wave vector kr is shown in Fig. 7. One can see that it increases

with time, and the trend is indicated by the black line in the figure. To calculate dkr/dt,

we make use of the end points of this line, namely ∆kr = 10π/0.4a, ∆t = 80LTi
/vthi, so

that the averaged value of dkr/dt is ∆kr/∆t = 0.98vthi/aLTi
. The averaged dωg/dr given

by ∆ωg/∆r, where ∆r = 0.4a and ∆ωg is the frequency difference between r/a = 0.5 and

0.9. Thus, the theoretical value is ∆ωg/∆r = −1.06vthi/aLTi
, which agrees well with that

(obtained by evaluating the slope dkr/dt of the black line in Fig. 7) from the simulation.

V. RADIAL PROPAGATION CHARACTERISTICS

The radial propagation of the GAM has been considered in several works.20–22 Ac-

cordingly, we consider the effect of n0 for Ti = 6keV, Te = 4keV, R0/LTi
= 2.4 and
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FIG. 7. (Color online.) Evolution of the radial wave vector kr(t) of the GAM.

FIG. 8. (Color online.) The radial velocity vr.

R0/Ln = R0/LTe = 6. From the four lines marking the peaks of the mode in Fig. 8,

one can obtain (from their averaged gradient) the mean radial velocity of the GAM. The

result is shown in Fig. 9, where vthi0 is the thermal velocity of deuteron for Ti = 6keV.

One can see that vr is almost independent of n0. This result differs from that of a TEX-

TOR experiment,20 which finds that vr decreases with increase of the local plasma density.

The discrepancy can be attributed to the fact in our GTS simulation the collision frequen-

cy is fixed and the temperature range is considerably higher than that in the experiment.

Instead, our simulation shows that the radial GAM velocity depends linearly on the ion

thermal speed, namely vr ∼ 0.05vthi.

Accordingly, we have also separately investigated the effects of Ti and mi, keeping the

other parameters fixed. In Fig. 10 for vr versus Ti we see that vr/vthi0 ∼ 0.061 at Ti = 6keV,

which agrees well with the value in Fig. 9. To further confirm our result, Fig. 11 for vr

versus mi shows that vr/vthi0 ∼ 0.04515 for mi = mD, which is also consistent with that

from Figs. 9 and 10. The result for vr versus Ti from Ref. 20 is shown in Fig. 12. We see

that it is consistent with that in Fig. 10. The ratio vr/vthi ∼ 0.0387 is also quite close that
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FIG. 9. (Color online.) vr versus n0. Here, vthi0 is the thermal velocity of deuteron for Ti = 6keV.
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FIG. 10. (Color online.) Vr versus Ti.

found in our simulation.

These relations can be expected: In terms of the GAM wavelength λ = 2π/kr, the radial

phase velocity of the GAM is vr = λf(τe)vthi/2πR0q. As shown in Fig. 3, in the regime of

interest f(τe) depends only weakly on Ti. The wavelength λ of the GAM should roughly be

the width of GAM-drift wave interaction region along the minor radius. One can see from

Fig. 8 that λ ∼ 0.3a. Thus, we have vr = 0.05vthi, in agreement with the simulation result.

Accordingly, one can conclude that vr depends linearly on vthi.

VI. SUMMARY

In this paper, the frequency continuum, the kr evolution, and the radial phase velocity of

the GAM have been investigated using GTS simulation and a simple analytical model. The
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FIG. 11. (Color online.) vr versus the ion mass mi, where mD is the mass of Deuteron.
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FIG. 12. (Color online.) vr versus Ti from the experiment in 20 for Te ∼ Ti.

frequency continuum agrees quite well with that from the model. The evolution of kr and

the radial propagation of the GAM are numerically simulated and it is found that the phase

velocity of the mode is proportional to the ion thermal velocity, in fact vr/vthi ≈ 0.05. These

results are in agreement with that from the TEXTOR experiments.20 However, the density

dependence of the GAM frequency found in the latter is not recovered in our simulation,

since we could not fully implement the experimental conditions in our simulation code. We

note that the results here may also be applicable to other zonal flows, such as that in the

Earth’s upper atmosphere.23
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Zoletnik, S. Soldatov, D. Reiser, K. Hallatschek, et al., Plasma Phys. Control. Fusion 53,

095015 (2011).

21T. Lan, A. D. Liu, C. X. Yu, L. W. Yan, W. Y. Hong, K. J. Zhao, J. Q. Dong, J. Qian, J.

Cheng, D. L. Yu, et al., Plasma Phys. Control. Fusion 50, 045002 (2008).

22Z. Qiu, F. Zonca, and L. Chen, Plasma Sci. Technol. 13, 257 (2011).

23T. Kaladze, O. Pokhotelov, L. Stenflo, J. Rogava, L. Tsamalashvili, and M. Tsiklauri,

Phys. Lett. A 372, 5177 (2008).

11


