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Abstract     

 Influence of toroidal equilibrium plasma rotation on m/n=2/1 resistive tearing modes is studied 

numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without 

shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a 

dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV>>1, where τR and 

τV represent resistive and viscous diffusion time, respectively.), the effect of the rotation shear combined 

with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV<<1), the rotation shear 

shows a destabilizing effect when the rotation is large.  
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I. INTRODUCTION 

 Magnetohydrodynamic (MHD) stability, in general, exists in both laboratory and space plasma. In 

magnetic confinement fusion (MCF), various classes of MHD instability essentially make up the basis 

of almost all aspects of achievable plasma performance and determine the principal operational limits in 

fusion devices like tokamak.1, 2 Since the ultimate limit is believed to be set by ideal MHD kink modes, 

the penultimate limit may arise from the resistive tearing instabilities. With finite plasma resistivity, 

magnetic field lines and plasma would be partial decoupled in a narrow layer of the plasma (around 

rational surfaces in a fusion device) where ideal MHD breaks down, thereby field lines are allowed to 

tear or reconnect and form magnetic islands.3 Those MHD instabilities could break magnetic flux 

surfaces, degrade plasma confinement, and lead to disruption eventually. Therefore, the MHD 

instabilities pose an enormous threat to MCF experiments. 

 The avoidance or control and stabilizing of the tearing modes is a very critical issue to maintain 



good plasma confinement for sustained high β (ratio of plasma pressure to magnetic field pressure) 

performance and steady-state operation in future magnetic confinement reactors, such as ITER. A great 

deal of efforts have been made both theoretically and experimentally to explore various methods to 

control this instability, such as using localized radio-frequency current drive or heating, or by the 

application of external helical current coils, etc.4, 5 In recent years, it has been experimentally observed 

from several tokamaks that neoclassical tearing modes (NTMs)6, 7 would be destabilized when the 

plasma rotation is reduced.8-10 It is indicated that the existence of toroidal shear flows may suppress 

development of the tearing mode stability. Plasma rotation is widely prevalent in tokamak devices and is 

usually resulted from neutral beams injection, ion cyclotron heating and self-consistent drift turbulence, 

etc. It has been known that toroidal plasma rotation can have a considerable effect on the stability of a 

tokamak.11  

 The influence of shear flows on tearing modes has been investigated for a long time. But most of 

past studies in theoretical analysis and numerical simulations were carried out in slab or cylindrical 

(large aspect ratio) geometries with a purely poloidal flow or a helical flow configuration.12-17 Recently, 

R. Coelho and E. Lazzaro18 studied the effect of sheared equilibrium plasma rotation on the stability of 

tearing modes in a cylindrical geometry quite elaborately by means of numerical MHD simulations. It is 

found that toroidal shear flow reduces the growth rates for viscous plasmas (τR/τV>1), but has a 

destabilizing effect for low viscosity plasmas (τR/τV<<1). D. Chandra et. al 19 numerically investigated 

the influence of toroidal sheared equilibrium flows on both the classical and the neoclassical tearing 

mode in a toroidal geometry by using NEAR code which solves a set of generalized reduced MHD 

equations. While differential rotation between rational (q=m/n) magnetic surfaces without shear is found 

to be stabilizing, toroidal velocity shear at the resonant surface is shown to be destabilizing in the 

absence of perpendicular viscous diffusion. A. Sen et. al 20 derived a flow modified external kink 

equation for a single helicity mode in a toroidal geometry and found the corrections to the tearing mode 

stability index Δ' arising from toroidal shear flow contributions. In their results, toroidal shear flow is 

also seen to make a destabilizing contribution to the tearing mode. 

 A new initial value MHD code (CLT) in toroidal geometries is developed to study the MHD 

stabilities in toroidal devices. In this paper, we use CLT to examine the influence of rotation on the 

tearing modes. This paper is organized as follows. In Sec. II, the formulation of CLT including the MHD 



equations and numerical methods is presented. Benchmarks of CLT are shown in Sec. III. Sec. IV gives 

the simulation results for m/n=2/1 resistive tearing modes with different rotation speeds and shear 

profiles. Finally, conclusion and discussion are placed in Sec. V. 

 

II. BASIC EQUATIONS FOR CLT 

 The full set of resistive MHD equations including dissipations is given as follows, 

 0( ) [ ( )]t D          v ,            (1) 

 0[ ( )]t p p p p p          v v ,           (2) 

 0) )]( [ (/t p           v v v vv J B  ,         (3) 

 t  B E ,                 (4) 

with 

 0( )   Jv JE B ,               (5) 

  J B ,                 (6) 

where ρ, p, v, B, E, J are the plasma density, thermal pressure, plasma velocity, magnetic field, electric 

field, and current density, respectively. Γ(=5/3) is the ratio of specific heat of plasma. All variables are 

normalized as follows: B/B00→B, x/a→x, ρ/ρ00→ρ, v/vA→v, t/τa→t, p/(B00
2/μ0)→p, J/(B00/μ0a)→J, 

E/(vAB00)→E, η/(μ0a
2/τa)→η, where τa=a/vA is the Alfvénic time, vA=B00/(μ0ρ00)

1/2 is the Alfvénic speed, 

B00 and ρ00 are the magnetic field and plasma density at the magnetic axis, respectively, and a is the half 

size of the plasma cross-section in the Z=0 plane. 

 For the equilibrium, following equations should be satisfied: 

 0 0( ) 0  v ,                 (7) 

 0 0 0 0 0p p     v v ,               (8) 

 0 0 0 0 0 0p    v v J B ,              (9) 

and  

 0 0 E .                 (10) 

Substituting these equilibrium equations into Equations (1-4) , Equations (1-4) can be rewritten as  

 1 1 0 0( ) [ ( )]t D         v v ,           (11) 

 1 0 1 1 0 01 [( () )]t p p p p p p p               v v v v ,      (12) 

 1 1 0 1 0 0 1 10 1 1( / ) (( )) /t p                 v v v v v v v J B vJ B ,   (13) 



 1t  B E ,                (14) 

where the variables with subscript 0 represent equilibrium components and 1 for perturbation 

components, e.g. v1=v-v0. Thus, numerical errors from equilibrium can be minimized.  

 In CLT, a cylindrical coordinate system (R, φ, Z) as shown in Figure 1 is used to solve Equations 

(11-14). In a toroidal geometry device like tokamak, R, φ, and Z indicate major radius, toroidal, and 

up-down directions, respectively. One advantage of this coordinate system is that one can avoid the 

singularity near r=0 point that occurs in the toroidal coordinate (ψ, θ, ζ). However, the outer boundary 

handling would be more difficult in cylindrical coordinate. In the current version of CLT, the plasma 

boundary at the last flux surface of plasma is assumed to be fixed.  
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FIG. 1. Sketch of cylindrical coordinate system (R, φ, Z) in a toroidal geometry device 

 

FIG. 2. Sketch of grids and flux surfaces in RZ-plane 
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 The grids are dispersed in R, Z, φ direction and those are rectangular grids in RZ-plane as shown in 

Figure 2. Finite difference method is employed in the R and Z directions, while in the φ direction, either 

finite difference or pseudo-spectrum method is used. In the time-advance, 4th order Runge-Kutta scheme 

is chosen.  

 

III. BENCHMARK STUDY  

 Benchmark tests are carried out to validate the credibility and applicability of CLT. 

A. Internal kink mode 

 The first test case is the m/n=1/1 internal kink mode. The geometry of initial equilibrium is simply 

adopted a circular poloidal cross-section with an aspect ratio of 4.0. The safety factor is varied 

monotonously from q0=0.6 at the center to qa=2.5 on the edge as shown in Figure 3 where the pressure 

profile is also shown. The q = m/n = 2 singular surface is located at about r≡(ψnorm)1/2 =0.63, with ψnorm 

the normalized poloidal flux, and the peak β is chosen to range from 0.027 to 0.164 for scaling study. 

The ideal MHD m/n=1/1 internal kink modes are unstable in these equilibriums. 

 The initial equilibrium variables such as magnetic fields and currents in CLT are from NOVA 

code21. The mode structure and linear growth rate of the internal kink mode for the given equilibrium 

can be also obtained from the NOVA code. In this case, the resistivity is set to be zero while small 

values (~10-6) for the viscosity and thermal conductivity is used to keep numerically stable in the CLT 

simulations.  

 Figure 4 shows the 2D structure of the eigen function (flux-surface normal velocity (v·▽ψ )) from 

a CLT simulation with β0=0.057. A dominant m=1 mode can be seen. Relevant mode structures versus 

major radius R in the mid-plane Z=0 of the cross-section (the dot-line in Figure 4) are shown in Figure 5. 

The dotted line is obtained from CLT and the dashed one is from NOVA. It is evident that the two results 

are in a good agreement.  

 Linear growth rates of the ideal kink mode with different β are shown in Figure 6. The linear 

growth rates from both CLT (red hollow dots) and NOVA (blue solid dots) increase with increase of β. 

When β is small, the growth rates from the two codes agree quite well; while β becomes larger, the 

growth rates from CLT are a bit smaller than that from NOVA. This may be attributed to that the CLT 



simulations are not completely 'ideal' actually, because of retaining of small dissipative terms and other 

numerical dissipations.  

 

FIG. 3. Initial equilibrium profiles of P and q for m/n=1/1 internal kink mode simulation. 

 
FIG. 4. Color contour plot of the internal kink mode structure; the flux-surface normal velocity (v·▽ψ ) is shown. 

  

FIG. 5. Eigen function vs. R in mid-plane from CLT (hollow dots) compared with that from NOVA (dish line) 
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FIG. 6. Linear growth rates with different β (red hollow dots from CLT and blue solid dots from NOVA) 

 

B. Resistive tearing/kink mode 

 The second test case is the m/n=2/1 resistive tearing mode. The geometry is given as the same as 

above, while the safety factor q varies from 1.6 at the center to 7.8 at the edge as shown in Figure 7. β is 

chosen to be low enough to avoid a ballooning instability. The m/n=2/1 mode is usually dominant with 

finite resistivity for such equilibrium.  

 Figure 8a shows the structure of the eigen function (perturbations of toroidal electric field Eφ1) 

from CLT with normalized resistivity η=10-5. The main perturbation is localized around the q=2 surface 

with dominant poloidal mode number m=2, which is expected from analytical theory. Relevant Poincare 

plot of magnetic field lines is shown in Figure 8b. 

 A series of cases for different resistivities is conducted. The relation between linear growth rates 

and Lundquist numbers S is shown in Figure 9. The fitting of the scaling low is about γ∝S-0.603 that 

agrees quite well with the analytical result22, γ∝S-3/5.  

  
FIG. 7. Initial equilibrium q profile for m/n=2/1 resistive tearing mode simulation. 
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FIG. 8. (a) Mode structure and (b) Poincare plot of magnetic field lines for m/n=2/1 resistive tearing mode with η=10-5 

  

FIG. 9. Scaling of linear growth rates γ vs. Lundquist numbers S for m/n=2/1 resistive tearing mode 

 

 The m/n=1 resistive kink mode with η=10-5 is also shown in Figure 11 with q-profile given in 

Figure 10. The scaling of γ about S is fitted as γ∝S-0.332 shown in Figure 12, which also agrees well 

with the analytical prediction23 (γ∝S-1/3) and previous simulation results24-26. 

 
FIG. 10. Initial equilibrium q profile for m/n=1/1 resistive kink mode simulation. 
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FIG. 11. (a) Mode structure and (b) Poincare plot of magnetic field lines for m/n=1/1 resistive kink mode with η=10-5 

 

  
FIG. 12. Scaling of linear growth rates γ vs. Lundquist numbers S for m/n=1/1 resistive kink mode 

 

IV. TEARING MODE WITH TOROIDAL ROTATION 

 Benchmark results have confirmed the reliability of CLT. We then use it to study resistive tearing 

modes with equilibrium toroidal rotation.  

 The equilibrium with toroidal flow can be solved by a modified Grad-Shafranov equation: 

 * 2 2
02

1

R

dg P
R g R

R d
  

 
           

,          (15) 

where the pressure ( , )P P R  is no longer a function of the flux surface and satisfies the relation

2|R P R    . The frequency of the toroidal rotation   can be proved a function of the flux surface 

( ( )   ) from 0 0 0( ) 0t    B u B . In general, the equilibrium plasma temperature T is still 

assumed to be a function of the flux surface, i.e. ( )T T  . Then from 0 0T B , the pressure can be 
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simply expressed as 2 2 2( )exp[ ( ) / 2 ]s mP P m R R T   , where ( ) ( ) ( ) /s sP T m    is the pressure 

without plasma flow, ( )s  is the stationary equilibrium density and Rm is the major radius at the 

magnetic axis. The density of equilibrium with toroidal flow can be written as 

2 2 2/ ( )exp[ ( ) / 2 ]s mmP T m R R T      . 

 The q-profile is chosen as the same as Figure 7, i.e., the dominant tearing mode is m/n=2/1. The 

plasma temperature T is chosen to be uniform. Three rotation profiles are adopted as shown in Figure 13. 

All of them have the same frequency ( 2 2( )r  , where 2 2|qr r  ) at the q=2 surface but different 

toroidal rotation shear ( 2 2/ ( )d dr r   ). The frequency of toroidal rotation is chosen to be constant 

for Profile 1, which is used to study the pure rotation effect without shear. Profile 2 has a shear about 

2 2/ 1.2     around the q=2 surface, while Profile 3 is for a larger shear 2 2/ 3.6    , as a 

comparison, the magnetic shear ( 2/ ( )q q r ) at the q=2 surface is about 2.5 in the equilibrium. 2 varies 

from 0 to 0.0074( /A Av a  ). The normalized resistivity η and viscosity υ are fixed to 1.0*10-5 and 

1.0*10-6, respectively. Since τR/τV<<1, the plasma is usually referred to be a low viscosity plasma. 

 

FIG. 13. Equilibrium toroidal rotation Ω profiles 
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FIG. 14. Linear growth rates γ vs. toroidal rotation at q=2 surface Ω2 

 

   Table 1. Summary of contributions of various terms in CLT on the linear growth rate of tearing modes. 

Rotation Ω2 Equilibrium pressure 

used 

Evolution of density Linear growth rate 

0 
0 ( )sP P   Off 0.00504 

0 
0 ( )sP P   On 0.00504 

0.00247 
0 ( )sP P   Off 0.00463 

0.00247 
2 2 2( )

2
0 ( )e

mm R R

T
sP P 

 

  Off 0.00461 

0.00247 
0 ( )sP P  On 0.00443 

0.00247 
2 2 2( )

2
0 ( )e

mm R R

T
sP P 

 

  On 0.00441 

 

 In the paper, we mainly focus on the influence of toroidal rotation on the linear stage of the 

m/n=2/1 resistive tearing modes, i.e. the influence on linear growth rate of the modes.  

 As shown in Figure 14, the linear growth rates of the mode decrease with 2  increase for all of 

three profiles. Unlike that in cylindrical geometry18, an equilibrium toroidal plasma in toroidal geometry 

flow not only provides a propagating frequency to the tearing mode, but also affects its growth rate even 

if the rotation is uniform. Comparing the results from the three different Ω profiles under the same 

rotation frequency at the q=2 surface ( 2 ), the difference of the growth rates among the three cases can 

be negligible when 2 is rather small. But, when 2  becomes large, we can see the linear growth 

rates with a shear rotation (Profile 2 and 3) are larger than that with a uniform rotation (Profile 1). The 

growth rate becomes larger as the gradient of the rotation shear increases, which suggests that a uniform 
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rotation leads to a stronger stabilizing effect when the rotation is sufficiently strong. It means that under 

condition of such equilibriums and parameters, the stabilizing effect on the tearing mode may be 

primarily resulted from the rotation itself, whereas rotation shear devotes an opposite contribution. It is 

quite consistent with the results from Ref. 18, 19, and 20 about the destabilizing effect of rotation shear 

for low viscosity plasmas.  

 As investigation in Ref. 19 for differential flows, the source of the stabilizing influence of rotation 

has been primarily traced to the pressure-curvature term and the toroidal coupling. But in our study, 

since a constant Ω in Profile 1 is used, we can exclude the effect of the toroidal mode coupling on the 

flow induced stabilization. Although the toroidal flow causes the modification of the equilibrium 

pressure from ( )sP   to 2 2 2( )exp[ ( ) / 2 ]s mP m R R T   , the modification can be ignored since

2 2 /R T m  . It is suggested that the pressure-curvature term does not play a role on the stabilization. 

For further verification, we artificially adopt the stationary equilibrium pressure ( )sP  instead of the 

pressure with flow induced modification. As indicated in Table 1, the linear growth rate only has a little 

change for the pressure with considering the modification of the toriodal rotation, but is much smaller 

than that without flow. It means that equilibrium modifications of the pressure profile caused by the 

centrifugal effects of flow have a little stabilizing effect but not sufficient. There should be other 

physical mechanism for the stabilization induced by the rotation flow. The following 

analytical estimation is useful to obtain the answer.  

 According to the theory of Frieman and Rotenberg27, the linear equation about Lagrangian 

displacement vector ξ for ideal MHD with an equilibrium flow U can be written as 

 
2 2 ( ) ( ) ( ) ( )t t s              ξ U ξ F ξ F ξ ξU U UU ξ ,      (16) 

where ( ) ( ) ( ) ( ) [ ( )]s P P            F ξ ξ ξ B ξ B ξ B B  that is the component 

associated with a static equilibrium. If we consider a uniform toroidal rotation, i.e. ˆR  U e , 

Ω=constant, and ξ is assumed the form of a normal mode ~ i t ine   ξ  , where i     is a complex 

frequency,  and are the real frequency and the growth rate, respectively, Eq. (16) can be simplified 

as  

 
2 2ˆ ˆ( ) 2 ( ) ( ) ( ) ( )Z s Rn i n R               ξ e ξ F ξ ξ e  .       (17) 

It can be reduced to the familiar linear equation for static equilibrium when Ω=0, 

 2 ( )s ξ F ξ .                (18) 



Comparing Eq. (17) to Eq. (18), besides a shift in frequency, the Coriolis effect as well as a centrifugal 

force 2ˆ( ) RR  ξ e appear in a second term on the left and right hands of Equation (17), respectively. 

These two terms would not appear in a cylindrical geometry with an equivalent toroidal flow. The 

stabilizing influence of the toroidal flow is only attributed to the centrifugal effect and Coriolis effect 

arising from toroidal geometry. Noting the centrifugal term is related to the perturbation of the density 

( 1 ( )    ξ ), we can drop the centrifugal effect by turning off the density evolution in CLT, i.e., 

ρ1=0 for all the time. In the absence of the flow, a little difference occurs whether ρ1=0 as shown in 

Table 1. However, when the toroidal rotation presented, the linear growth rate appears larger without the 

density evolution than with the density evolution. It is suggested that the centrifugal effect also puts up a 

stabilizing influence. But the reduction of the linear growth rate is still quite considerable in the 

presence of the toroidal flow even if the centrifugal effect is dropped. It implies that the Coriolis effect 

may have a considerable even dominant contribution to stabilize the mode. To understand this 

mechanism, a rough estimation is given based on Equations (17) and (18). If we assume that the 

difference of the eigenfunction ξ is negligible with and without flow, i.e., ( )sF ξ  in Equation (17) can 

be replaced by ( )sF ξ  in Equation (18), and the centrifugal term is ignorable. Thus, Equation (18) is 

simplified as 

 2 2
0

ˆ( ) 2 ( ) ( )Zn i n          ξ e ξ ξ  .           (19) 

where 0  is the growth rate of the mode without flow. In our cylindrical coordinate, Equation (19) can 

be written to a set of equations: 

 
2 2

0[( ) ] 2( ) 0Rn i n              ,             (20a) 

 2 2
0[( ) ] 2( ) 0Rn i n             .                (20b) 

From Equation (20), the eigenvalue equation for   is obtained: 

 
2 2 2 2 2

0[( ) ] 4( ) 0n n           .            (21) 

To solve this eigenvalue equation, the growth rate of a growing mode with the rotation Ω can be attained 

as 2 2 1/2
0( )   . This relation is shown as a red solid curve in Figure 14. Although the resistivity and 

the correction to the pressure from the rotation have not been considered, the estimated growth rates 

agrees quite well with the simulation results, especially when 2 0   for all the three profiles. It 

indicates that the Coriolis effect devote a dominatingly stabilizing contribution to the tearing mode with 

toroidal rotation in a toroidal geometry at least when 2 0  . 



 

 

FIG. 15. Mode structures (Eφ1) for different rotations and shears 

 

 Figure 15 shows the mode structures (perturbations of the toroidal electric field Eφ1) at different Ω 

profiles (different shear) with Ω2=0.0025 and Ω2=0.0062, respectively. When the rotation is small 

(Ω2=0.0025), indeed, the mode structures differ little from that without flow in Figure 8a, besides some 

global shift. However, when the rotation is large (Ω2=0.0062) and sheared, the mode structure is 

distorted. The larger the shear is, the more severe the structure is distorted. Hence, this deformation of 

the mode structure or the magnetic island structure may be one of illustrations how local flow shear can 

influence the stability of the tearing mode as mentioned in Ref. 28 and 29. 

Table 2 Linear growth rates of tearing modes for various viscosities and rotation shears. 

Rotation shear Linear growth rate γτa 

(Ω2'/Ω2) ν0=1*10-6 ν0=1*10-5 ν0=1*10-4 

0 0.000841 0.000723 0.000349 

-1.2 0.000857 0.000724 0.000343 

-3.6 0.000866 0.000731 0.000336 
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FIG. 16. Mode structures (Eφ1) for different viscosities and rotation shears 

 The role of the viscosity is also examined. We fix Ω2 as 0.0062 and choose the normalized 

resistivity η to be 1.0*10-6. The normalized viscosity ν0 is chosen to be from 1.0*10-6 to 1.0*10-4. As 

shown in Table 2, the linear growth rate of the mode rapidly decreases with increase of the viscosity for 

all three rotation profiles. When the viscosity is small (ν0=1*10-6), the linear growth rates increases with 

increase of the rotation shear, as demonstrated above. But, when the viscosity becomes large (ν0=1*10-4), 

the linear growth rate decreases as the rotation shear increases. This is consistent with the results of Ref. 

18 for viscous plasmas. For an intermediate viscosity (ν0~1*10-5), the linear growth rate are nearly the 

same for different rotation shears. It implies that the rotation shear coupling with the viscosity may take 

a stabilizing effect, although the rotation shear itself plays a destabilizing role.  

 The mode structures for various viscosities and different rotation shears are shown in Figure 16 as 

well. It is evident that the distortion of the mode structure becomes more severe when the rotation shear 

increases. Meanwhile, a more severe distortion of the mode structure occurs with the higher viscosity 
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for the same rotation shear. 

 

 

FIG. 17. Scaling of linear growth rates γ vs. Lundquist numbers S for different rotation Ω2 

 

 We also study the relation between the linear growth rate γ of tearing modes and Lundquist number 

S under different rotations for Profile 2. As shown in Fig. 17, the log-log curve about γ versus S seems 

to flatten, i.e., the dependence of γ on S is weakened, when Ω2 increased. 

 

VII. CONCLUSION AND DISCUSSION 

 A new MHD code (CLT) in the toroidal geometry under the cylindrical coordinate system is 

developed to study the MHD stabilities. Through a series of the benchmark tests, it is indicated that CLT 

is feasible and reliable.  

 CLT is further used to examine the effect of toroidal plasma rotations on the resistive tearing mode 

in tokamaks. The simulation results show that, the toroidal rotation itself can suppress the tearing 

instability, whereas the rotation shear exerts little influence when flow is small ( 2 0  ) but reduces 

this stabilizing effect when the rotation flow becomes large enough ( 2 0  ) for low viscosity plasmas 

(τR/τV<1). However, when the viscosity becomes higher (τR/τV>>1), the effect of the rotation shear 

combined with the viscosity appears to be stabilizing. This is consistent with the findings of previous 
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studies18-20. 

 Excluding the toroidal mode coupling effect, the stabilizing effects of the rotation may primarily 

arise from the equilibrium modifications of the pressure profile, the centrifugal effect and the Coriolis 

effect due to the toroidal geometry. By artificially turning on/off the time evolution of specific variables 

(the pressure and the density) in CLT to identify each contribution of these effects and with a simple 

analytical estimation, we find that the Coriolis effect may have a considerable even dominant influences 

on the rotation induced stabilization. 

 The mode structure (or the magnetic island structure) would be distorted as in Ref. 28 and 29, when 

the rotation shear exists around the rational surfaces, which may be one of illustrations how local flow 

shear can affect the stability of the tearing mode. 
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