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For plasmas in extremely high-density state, like stellar cores or compressed fuel in the inertial
fusion facilities, their behavior turns out to be quite different when compared with those plasmas
in the interstellar space or magnetic confinement devises. In order to figure out such differences
and uncover the kinetic physics in electrostatic excitations, a quantum kinetic code solving Wigner-
Possion equations has been developed. Basic plasmon decay, Landau damping and two stream
instability of extremely high density plasmas are investigated by using our newly developed code.
Numerical simulations show that in the linear region, the dispersion relations of intrinsic modes can
be significantly affected by quantum effects, and such simulation results can be well described by the
existing analytical theory. Especially in the nonlinear region, since the space-time scale of collective
modes of plasmas are comparable to electron de Broglie wavelength, their couplings produce some
new physics: the energy exchange between the electron and collective mode result in an abnormal
oscillation which does not exist in classical plasmas.

I. INTRODUCTION

When a plasma is dense enough such that the average
distance among electrons is comparable to or even smaller
than their thermal de Broglie wavelength, the plasma
then enters into quantum regime [1]. Quantum plasmas
are also widely exiting in the universe. The study of
quantum plasma is of great significance in many differ-
ent fields of physics, such as inertial confinement fusion
(ICF) [2], nano-physics [3], astrophysical plasmas [4, 5]
and warm dense matter (WDM) [6]. Quantum plasma
differs from regular plasma in the following two aspects:
1) the equilibrium state of quantum plasma obeys the
Fermi-Dirac statistics instead of the Maxwellian because
of the overlapping of electron spacial wave function; 2)
the quantum wave effect of single electron alters the col-
lective behavior of quantum plasma since they (the quan-
tum wave and the plasma wave) have a comparable space-
time scale.

The state-of-the-art approaches for investigating quan-
tum plasmas are those based on the density-functional
theory (DFT) [7, 8]. The DFT-based methods are often
combined with the molecular dynamics (MD) method or
quantum Monte Carlo (QMC) method [9–11], in order
to achieve desirable accuracy in a variety of parameter
regions. However, the DFT-based methods usually focus
on the microscopic structure of matters, for example, the
lattice of solids or the shape of molecules, and only in-
volve a small number of particles (ranging from hundreds
to thousands). Hence, it is not suitable for macroscopic
or mesoscopic systems in which the number of particles
is almost uncountable.
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In order to investigate a macroscopic or mesoscopic
system, a statistical method is often needed. The most
popular simulation method in plasma physics community
is kinetic method. In classical plasmas, Vlasov equation
is often used, with the distribution function determined
by spatial position and velocity. However, in quantum
mechanics, the coordinate and the velocity of a particle
cannot be determined simultaneously due to the uncer-
tainty principle. Hence, a particle with a definite phase
space coordinate is ill-defined in a quantum mechanical
system. Nevertheless, the quantum kinetic method with
Wigner’s quasi-distribution function [12] and the Wigner
equation [13] bring us a mean to bypass this obstacle.

The quantum kinetic theory (QKT) starts from
second-quantized many-body quantum theory, which
convert the equation of motion of the quantum field op-
erator into a Boltzmann-like transport equation, with in-
teractions beyond the Hartree mean-field approximation
included in the collisional term [13–15]. Hence, QKT
is of great potential in calculating high-order quantum
correlations[16]. Analog to the fluid description in clas-
sical plasma [17], the quantum hydrodynamics (QHD)
treats the quantum electron gas as a fluid [17]. The equa-
tion of motions of the quantum fluid can be simplified
into a single nonlinear Schrödinger equation. Although
the QHD is less cumbersome and in the last two decades,
a lot of work has been done by using QHD [18–21], its
accuracy is yet to be tested [22, 23].

In this paper, we take the collisionless quantum kinetic
equation, i.e., the Wigner equation [13] as a starting point
to investigate the quantum nature of dense plasma. The
ions are assumed to be static and serve as a neutralization
background throughout this paper. A modified numer-
ical method is adopted. Theory and numerical simula-
tions show that even in the linear region, the dispersion
relations of intrinsic modes can be significantly affected
by quantum effects. Especially in the nonlinear region,
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Figure 1. Relation among different characteristic parame-
ters of quantum plasmas. The solid line represent the region
with the corresponding parameter greater than one, while the
dashed-line the opposite [6].

since the space-time scale of collective modes of plasmas
are comparable to electron de Broglie wavelength, their
couplings produce some new physics. For example, a
single-particle-quantum-oscillator-like structure is found
in a quantum BGK equilibrium. Further more, energy
exchange between the electron and collective mode re-
sult in an abnormal oscillation which does not exist in
classical plasmas.

This paper is organized as follows. In section II, we
briefly review the basic ideas of QKT, and then our nu-
merical method is brief introduced. Section III displays
the basic plasmon decay and quantum Landau damping
in the linear region. And in section IV, the nonlinear
evolution of a quantum two-stream instability is studied
in detail.

II. METHODS

A. Description of Quantum Plasmas

Firstly, it is natural to define a general normalized
Planck constant (NPC):

~̂c =
~ωp

mv2
c

, (1)

where m is the mass of electron, and vc stands for a
critical velocity of the physical system. For example, if we
choose Fermi or thermal velocity as the critical velocity,
we have

~̂F =
~ωp

2EF
, ~̂T =

~ωp

2kBT
, (2)

respectively. Here, kBT is the thermal energy of elec-
trons, ωp =

√
4πne2/m is the plasma frequency, and

the Fermi energy EF = ~2
(
3π2n

)
2/3/2me is the chem-

ical potential of a degenerate zero-temperature electron
gas. Noticing that these two NPCs are related by the
degeneracy of the system:

Θ =
~̂F

~̂T

=
kBT

EF
, (3)

and, ~̂F is only the function of density:

~̂F = 5.09× 103cm−
1
2n−

1
6 , (4)

and ~̂T is suitable for situations in which the temperature
is high enough to disguise the Fermi statistic effect while
the quantum effect still exists to some extent. Another
famous pair of characteristic parameters is

ΓF =
e2n

1
3

EF
, ΓT =

e2n
1
3

kBT
. (5)

They are the ratio between Coulomb potential energy
and Fermi/Thermal energy. The traces of characteristic
parameters mentioned above equal to one respectively are
plotted in Fig. 1, from which one can see that Θ = ~̂F =
~̂T = 1 stands for a low-density-low-temperature WDM,
and Θ = ΓF = ΓT = 1 a high-density-high-temperature
WDM.

The velocity distribution obeys the Fermi-Dirac statis-
tics:

fFD3(v) =
3n

4π

1

e(v2−µ̂)/Θ + 1
, (6)

where µ̂(Θ) = µ(T )/µ(0) is the chemical potential nor-
malized by Fermi energy. Furthermore, when we are dis-
cussing wave-particle interactions, only one direction of
the velocity, namely, the direction that is parallel to the
wave, has to be considered. Hence, we can remove the
extra two dimensions by integration and then obtain the
one-dimensional Fermi-Dirac distribution

fFD1(v‖) =
3n

4
Θ ln

[
e(µ̂−v2‖)/Θ + 1

]
. (7)

An important difference between the quantum and the
classical kinetic theory is that the distribution function
of the former can take on negative values. This is because
in QKT, the distribution function is defined by [13]

f(x,v) =
1

(2π~)3

∫
dξe−imv·ξ/~̂c

×
〈

Ψ†
(
x− ξ

2

)
Ψ

(
x+

ξ

2

)〉
,

(8)

where Ψ(x) is the quantum field operator, and 〈· · · 〉
stands for ensemble average. Eq.(8) is referred to as
the Wigner quasi-distribution function, which can only
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be interpreted as a probability distribution in the clas-
sical limit. Nevertheless, the macroscopic properties of
the Wigner function are identical to the classical distri-
bution, for example,∫

f(x,v)dv =
〈
Ψ† (x) Ψ (x)

〉
= 〈n(x)〉 (9)

is the average number density of the system. The dy-
namic behavior of the Wigner function is governed by
the Wigner equation

(∂t + v · ∂x) f(x,v, t) =
1

i~̂c

∫
dξ

∫
dv′

(2π)3

× ei(v
′−v)·ξ/~̂c [φ+ − φ−] f(x,v′, t)

(10)

in the collisionless limit. Here, φ± is the abbreviation for
φ(x± ξ/2). Along with the Poisson equation

−∇2φ = 4πe

[
Zni −

∫
dvf(v)

]
, (11)

where Z is the charge number of ions, the system is
closed. The term ”collisionless” in QKT is equivalent
to the term ”Hartree mean-field approximation” in DFT
based methods [15].

Noticing that if the time, coordinate, and velocity
variables in the above expressions are normalized to
the inverse of plasma frequency ω−1

p , the Thomas-Fermi
screen length λF = vF/ωp and the Fermi velocity vF =√

2EF/me, respectively, we shall replace the general NPC

~̂c by ~̂F.

B. Numerical Method

The cumbersome phase-space integration in the
Wigner equation makes the numerical solving not as
straightforward as the Vlasov equation. The first numeri-
cal approach for Wigner equation was proposed by Suh in
Ref. [24]. This approach is based on the splitting method
[25], which was widely used and proven to be quite ro-
bust in solving the Vlasov equation, where the partial
derivatives on the coordinate and velocity directions are
treated separately. As velocity integral of Wigner equa-
tion can only be efficiently solved by Fourier spectrum
method (FSM), Suh’s method [24] uses FSM to advance
both the coordinate and velocity direction. However,
our benchmark simulations indicate that the long-time
results of Suh’s method are unsatisfactorily “noisy”. Al-
though there might exist some room for further improve-
ment under Suh’s pure FSM framework, we here invent or
adopt a new numerical method: the flux balance method
(FBM) [26] is used to advance the coordinate direction
and FSM is used to the velocity direction. In order to
distinguish Suh’s pure FSM method, our method is here
referred as hybrid splitting method (HSM). Benchmark
simulations show that, in the case of long-time nonlinear

simulations, our method, although simple, could ensure
the smoothness of phase space and energy conservation.
A detail comparison between Suh’ method and our HSM
method is displayed in Fig. 2.

III. PLASMON DECAY AND QUANTUM
LANDAU DAMPING

The direct linearization of Eq.(10) yields the famous
random phase approximation (RPA) [27]:

ε(ω,k) = 1 +
4πe2

k2
Π0(ω,k) = 0, (12)

where

Π0(ω,k) =

∫
dp

f (p)− f (p+ ~k)

~ω − k · ~v − ~2k2/2m
(13)

is the Lindhard response function [28]. In the classical
limit, where the wave length of collective mode is much
longer than the wave length of electron, i.e., |k| � |p| /~,
Eq.(12) becomes

ε(ω,k) = 1− 4πe2

k2

∫
dp
k · ∂pf (p)

ω − k · v
, (14)

which is the well-know dielectric function of classical
plasma. By assuming small damping rate, the real part
and the imaginary part of the Lindhard function (13) are
calculated separately:

Re[Π0] =
π

EFk̂
P

∫ ∞
0

dp̂ p̂f(p̂)

×
[
ln

(
p̂−A+

p̂+A+

)
− ln

(
p̂−A−
p̂+A−

)]
,

(15)

Im[Π0] =
3π2n

8EFk
ln

1 + exp
[(
A2

+ − µ̂
)
/Θ
]

1 + exp
[(
A2
− − µ̂

)
/Θ
] , (16)

where

A± ≡ ~̂F
ω̂

k̂
± k̂

2
. (17)

and p̂ = p/pF, ω̂ = ω/ωp, k̂ = k/kF are normalized
quantities. As Θ → 0, an analytical result is obtained
[28], i.e.,

Re[Π0] =
3n

4EF

[
1 +

kF

2k

(
1−A2

−
)

ln

∣∣∣∣1 +A−
1−A−

∣∣∣∣
−kF

2k

(
1−A2

+

)
ln

∣∣∣∣1 +A+

1−A+

∣∣∣∣] . (18)

It is clear from Eq.(15) that, when |A±| < 1, Π0 has no
imaginary part. Thus, Eq.(12) is solved via the substitu-
tion of Eq.(18), and we plot the result in Fig. 3. The
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Figure 2. Comparison between pure FSM and HSM. (a) and (b) plotted the phase space snapshot of a classical BGK hole
calculated by FSM and HSM respectively. (c) and (d) plotted the electric field and energy of each component of the system
calculated by the two methods.

dashed-line stands for a false solution from the small
damping approximation. At zero temperature, there
is still an electron-hole excitation continuum (the area
where |A±| > 1) in which the cold plasmons are absorbed
by the electrons, although there is no Landau damping
[29]. This phenomenon can be demonstrated by our lin-

ear simulation. Note, we always keep ~̂F = 1 in this
section for convenience, which corresponds to a plasma
with number density n = 1.74× 1022cm−3.

A linear simulation result is plotted in Fig. 3, where
the frequency of plasmons is represented by red crosses
and the damping rate (−γ/ωp) by inverted triangles.
One can see that the plasmons with finite damping rate
are those that fall within the plasmon decay continuum,
while those fall outside the continuum are almost identi-
cal to the Lindhard solution. From Eq.(13), we find that
a plasmon when satisfying the Cerenkov condition:

ω − kv − ~k2

2m
= 0, (19)

yields a pole of the integration, which is analog to the
wave-particle resonant condition ω − kv = 0 in classi-
cal plasmas. The wave-particle interaction in quantum
plasmas is essentially a wave-wave interaction. Defining
q = mv/~ and Eq = ~2q2/2m, then Eq.(19) become

~ω =
~2 (k + q)

2

2m
− ~2q2

2m
= Ek+q − Eq. (20)

The physical intension is rather clear: a plasmon with en-
ergy ~ω is absorbed by an electron with energy Eq. Fig.

4(a) plotted the Cerenkov match condition of a plasmon
with (ω/ωp, k/kF) = (1.58, 1.05). This plasmon is ab-
sorbed by an electron slightly below the Fermi surface,
and kicks the electron out of the Fermi sea. Noticing that
the electron obeys the dispersion relation

ω =
~k2

2m
. (21)

Actually, from Fig. 4(b), we can see that there are indeed
a bunch of electrons excited to the corresponding loca-
tion. However, such a high-energy electron beam may
not always be observed, especially in higher wave num-
ber cases, due to nonlinear phase mixing or quantum
correlation.

As the temperature rises, the role of the thermal Lan-
dau damping begins to emerge. In order to obtain the
exact solution of Eq.(12), we need to extend the domain
of definition of ω to the region where Im[ω] < 0 by means
of analytic continuation, i.e.,

Π0(ω,k) =



∫
dv‖

f−FD1 − f
+
FD1

~ω − k~v‖
, Im[ω] > 0,∫

dv‖
f−FD1 − f

+
FD1

~ω − k~v‖

+
2πi

~k
[
f−FD1 − f

+
FD1

]
v‖= ω

k

,

Im[ω] < 0,

(22)
where f±1FD1 = f±1FD1

(
p‖ ± ~k/2

)
, and the extra term in

Im[ω] < 0 region comes from the residue of the integrand
at the pole v‖ = ω/k. In Fig. 5, we calculated Θ = 0.2, 1
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Figure 3. Numerical result of zero-temperature (Θ = 0.01)
plasmon decay. The black solid line and dotted line is calcu-
lated from Eq.(18).

Figure 4. This figure presents the result of plasmon decay at
k = 1.05kF. (a) Cerenkov parallelogram matching condition.
(b) Distribution function of electrons, where a small bunch of
electrons are excited by plasmons.

and 2, which corresponding to T = 5672K, 28360K and
56720K, respectively, in a ~̂F = 1 plasma. These param-
eters roughly fall within the parameter range of WDM
experiments [2, 6]. Similar results were obtained by Ref.
[30], in which the authors adopted a PIC semi-classical
simulation and did not include the quantum recoil effect.

Figure 5. Linear Landau damping of a dense (~̂F = 1) plasma.
The solid lines and the dashed-lines are the real part and mi-
nus of imaginary part of the exact solutions of Eq.(12), while
the circles and the triangles are the corresponding simulation
results.

IV. QUANTUM TWO-STREAM INSTABILITY
AND THE QUANTUM BGK MODE

A. Linear Result

Two-stream instability in quantum plasmas has been
investigated by many authors [31–35]. However, despite
the fact that two-stream instability is a reactive-type
instability, namely the instability driven by the Hermi-
tian part of the dielectric function [36], the real world
plasma always possess finite temperature. Especially in
a high-density plasma, the Pauli exclusive principle en-
sures the electrons have finite velocities even at zero tem-
perature. Thus, regardless of the reliability of QHD, a
kinetic method is needed, as is pointed out in Ref. [31]
and Ref. [34].

In the fluid limit, it is convenient to define another
NPC:

~̂d = ~ωp/mv
2
d, (23)

where vd is the relative drift velocity of the two streams.
Hence the eigen-mode frequency of quantum fluid two-
stream instability can be written as [34, 37]

ω =
ωp√

2

[
1 + 2~̂dk̃

2 +
~̂2

dk̃
4

2

±
√

1 + 8k̃2 + 4~̂2
dk̃

6
] 1

2

,

(24)

where k̃ = kvd/ωp. As is shown in the left panel of
Fig. 6, the quantum recoil effect creates an extra un-
stable region which hides itself at k = ∞ when ~̂d = 0.
As ~̂d increases, this unstable quantum “bubble” moves
toward longer wavelength and absorbed by the original
unstable bubble at a certain value of ~̂d. Noticing that
the quantum bubble is always located in relatively high
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Figure 6. Dispersion relation of quantum two-stream instability varying with ~̂d (left). Simulation of the extra unstable region
created by quantum recoil effect (right).

wave-number region, where any disturbance is heavily
Landau damped. As a result, this unstable region may
not exist in real dense plasma. In the right panel of Fig.
6, we simulated a quantum two-stream instability around
~̂d = 1 with an exaggerated drift velocity, i.e., vd = 50vF,
in order to eliminate the kinetic effect. Even so, the nu-
merical approach still can not reproduce the quantum
bubble calculated by Eq.(24), except for some distortion
in the high wave number region.

We will show that the quantum effect has the most
impact in the nonlinear phase in the next sections by
consider a more realistic quantum plasma with a reason-
able ratio of Fermi velocity to drift velocity.

B. BGK Equilibrium in Partial Quantum System

It is shown by Bernstein, Green and Kruskal [38] that
there exists a nonlinear equilibrium mode, namely, the
BGK mode, in an electron electrostatic plasma. The
BGK mode is ubiquitous in the field of plasma physics be-
cause it provides a important kinetic nonlinear saturation
mechanism for many plasma instabilities. The onset of
particle trapping in quantum Landau damping is briefly
discussed in Ref. [30], where the potential trough that
traps the particle is rather shallow because this trapping
process occurs after a period of Landau damping. Here,
we set up a BGK equilibrium by a symmetrical electron
two-stream system to investigate the particle trapping
process in quantum plasma. To see how quantum re-
coil effect affects the BGK mode, we scan the NPC ~̂T

from 0 (Vlasov equation) to 10. As ~̂T increases, which
means that the temperature decreases and the density
increases, quantum recoil effect will eventually become
dominant and the kinetic effect disappears. A system in
the state in which kinetic effects completely disappear is
referred to as a fully quantum system, and the medium
state between quantum and classical systems is called
partial quantum system.

The snapshots of typical moments of the development
of a classical BGK mode are presented in the upper pan-
els of Fig. 7. The panel (a) stands for the end of linear
growth, and the electron beams start to twist. In panel
(b), electrons with velocity near the wave velocity (which
is equal to zero in our wave frame of reference) bounce off
the potential barrier and complete a full cycle at panel
(c). A nearly steady state is formed after several bounce
period, as is shown in panel (d).

In lower panel of Fig. 7, where ~̂T = 0.8, one can see
that, from panel (e) to (h), the basic shape of a classical
BGK hole is preserved. This is a typical partial quantum
system. Consider a pure state harmonic oscillator, the
Wigner representation of which is [39]

wn(x, p) =
1

π

(
1

4

)n
e−(x2+p2)

×
n∑
k=0

H2k

(√
2x
)
H2(n−k)

(√
2p
)

k!(n− k)!
,

(25)

where Hn is the n-th order Hermitian function, and thus
n is the quantum number of a quantum harmonic oscil-
lator. The pictorial representation of Eq.(25) is a ripple-
like structure, which is exactly like what we have found in
the nonlinear saturation phase of the ~̂T = 0.8 quantum
BGK mode, as is shown in Fig. 7(d). The physical inter-
pretation is rather clear: the hollow structure in classical
BGK mode is nothing but the phase space representation
of a classical oscillator, hence it is not surprising to find
a quantum oscillator in a quantum BGK mode.

C. Periodic Solution in Full Quantum System

We examine a full quantum system further by increas-

ing the product of the NPC ~̂F and wave number k̂, which
indicates the ratio of energy and momentum between a
plasmon and an electron sitting on the Fermi surface.
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Figure 7. (a) to (d): BGK equilibrium in classical plasma. (e) to (h) BGK equilibrium in partial quantum plasma, a n = 3
quantum oscillator is formed at the nonlinear stage.

Figure 8. Energy evolution of two-stream instability with
different values of ~̂Fk̂.

The energy of the resonant mode of three typical param-
eters is presented in Fig. 8, from which we found that

when ~̂Fk̂ = 2 the wave energy is almost constant in the
nonlinear saturation phase, and this is corresponding to
the quantum BGK equilibrium we have discussed in the

previous section. When the value of ~̂Fk̂ is high enough,
one can see that an interesting phenomenon occurs at
the nonlinear phase: when the electric potential reach its
linear limitation, instead of saturating into a relatively
steady state, the wave damps to equilibrium level with
the damp rate exactly equal to the opposite of the linear
growth rate, and then growing back to linear limitation,
and so on and so forth. This nearly periodic anomalous
oscillation does not fade away after hundreds of plasma
oscillation periods if there is no dissipation mechanism.

The evolution of the harmonics of the ~̂Fk̂ = 4.8 electric

Figure 9. Abnormal oscillation of a ~̂Fk̂ = 4.8 quantum two-
stream instability, the harmonics grow and damp with its cor-
responding linear growth rate.

potential is plotted in Fig. 9. Noticing that this intrigu-
ing phenomenon is quite analog with what is reported in
Ref. [37] by means of quantum Dawson model, i.e., a cou-
pled Schrödinger-Poisson model. The quantum Dawson
model is approximately equivalent to the Wigner-Poisson
model, when the number of pure states N is large enough.

The abnormal oscillation is result from the energy ex-
change between electrons and the plasmon. The momen-
tum of the plasmon, i.e., the wave number of the quantum
Langmuir wave, must obeys the condition

~̂Fk̂ ? v̂d − 2, (26)

or, equivalently,
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Figure 10. Velocity distribution of (a) classical BGK equilib-
rium, (b) quantum BGK equilibrium, (c)(d) the peak of the
abnormal oscillation. The dotted-line stands for the initial
distribution.

~k
m

?
1

2
(vd − 2vF) . (27)

This condition is not exact because there are always ther-
mal electrons outside of the Fermi surface when the tem-
perature is finite. As shown in Fig. 10, the drift velocity
of the two electron beams is 6vF, thus the normalized

momentum of a plasmon ~̂Fk̂ should be approximately
larger than 4. Panel (a) is a classical BGK equilibrium,
while panel (b) is a quantum BGK equilibrium where
the wave-length of the resonant mode does not satisfy
the threshold condition (26), hence there the abnormal
oscillation does not occur. On the contrary, in panel (c)
and (d), while the velocity distribution at the peak of
the abnormal oscillation is plotted, we find that a pair of
electron bunch is excited according to the Cerenkov con-
dition (19). Thus, this abnormal oscillation stems from

the wave-wave energy exchange, which is the quantum
version of the wave-particle energy exchange mechanism
in classical plasma physics.

V. CONCLUSION AND DISCUSSION

In this paper, the Wigner-Poisson system is numeri-
cally solved by using a hybrid numerical scheme in order
to investigate the quantum nature of dense plasmas. Our
hybrid numerical scheme, although is simple, shows sig-
nificant advantages in energy conservation and smooth-
ness of phase space. The linear results of simulations are
benchmarked with RPA theory. The thermal effect to
linear quantum Landau damping is also benchmarked by
both eigenvalue method and time-dependent initial value
method, which show almost identical results.

In the nonlinear region, the role of quantum recoil ef-
fect in dense plasma is studied in detail. The BGK equi-
librium formed by two counter-flowing electron beams
demonstrates an interesting yet perspicuous quantum
mechanical phenomenon. When the wavelength of wave
function of electron is much shorter than the wavelength
of the collective mode but still long enough such that the
wave effect cannot be ignored, the electrons trapped in
the potential trough form a quantum oscillator in phase
space. When the scale of the two wave-length is compa-
rable and a threshold condition is satisfied, the energy
exchange between the electron and collective mode re-
sult in an abnormal oscillation which does not exist in
classical plasmas.
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