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Abstract 

Artificial intelligence driven by large data is becoming increasingly important in magnetic fusion research. Here we scan the 

plasma gradient space for Cyclone Base case parameters using nonlinear gyrokinetic simulations to generate data for typical 

electrostatic drift wave turbulences. The main candidates, ion temperature gradient mode (ITG), and trapped electron mode 

(TEM), are then classified and labeled by conventional methods for the datasets in the linear stage. We then apply a classical 

machine learning algorithm, namely the support vector machine (SVM), and use plasma gradients or feature turbulence 

quantities as the input to classify the type of the drift wave turbulence. Simple distance formulae are obtained for fast 

classification of the turbulence type and justified for their effectiveness, which can be used for future theoretical analysis and 

real-time experiment.   
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1. Introduction 

Turbulence prevails in nature and laboratory with multiple temporal and spatial scales. In magnetic fusion plasmas, energy 

and particle transport caused by electromagnetic fluctuations or turbulence are much larger than those caused by collisional 

processes [1]. The confining capability of magnetic fusion device is critically determined by the turbulent transport largely 

caused by drift wave instabilities [2,3], which is usually excited by free energy stored in the radial temperature or density 

gradients of the fusion plasmas. Different temperature and density gradients corresponds to a variety of drift wave instabilities, 

typically including the ion temperature gradient mode (ITG) [4], trapped electron mode (TEM) [5], electron temperature mode 

(ETG) [6], etc. It is important to identify the type of these instabilities that drives the turbulence, which provides crucial 

information that could be used to predict the transport level for a given set of plasma parameters.  

Artificial intelligence (AI) such as machine learning has been recently pursued to predict the occurrences of tokamak disruption 

[7] and proactively control the plasma profile evolution. For example, a number of surrogate transport models has been built to 

predict turbulent transport or kink mode based on the machine learning [8,9,10]. In this work, we try to use machine learning, 

specifically the support vector machine (SVM) method [11,12], to help classify different types of turbulence. This method has 

been used for effectively classifying experimental data in the low or high confinement mode of tokamaks [13], with a 

hyperplane generated for segmentation after the experimental data is properly transformed in the parameter space. The 

turbulence data for classification is obtained by first-principles gyrokinetic simulations using the Gyrokinetic Toroidal Code 

(GTC), which is widely used in the fusion community for simulate plasma turbulence in fusion devices such as tokamak and 

stellarator [14,15]. The GTC code has successfully demonstrated capabilities in simulating ITG, TEM, ETG, kinetic ballooning 

mode (KBM) and other important drift wave instabilities, as well as producing reliable turbulence data for the machine learning 

analysis [16].  
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In this paper, we first introduce the working framework in section 2. Then the details of dataset generation are given in 

section 3, including linear instability data and nonlinear turbulence data. In section 4, the feature selection for the turbulence 

data is carried out. Next, the SVM classification of turbulence is presented in section 5, using either instability drive or featured 

turbulent quantities as the classifiers. In the end, we conclude this paper with a short summary and some discussions. 

 

2. Working Framework 

In this work, we use the Gyrokinetic Toroidal Code (GTC) to generate a large amount of data for machine learning [17]. 

GTC is a three-dimensional global gyrokinetic particle simulation code, where the electron is simulated by a fluid-kinetic hybrid 

model and the ion is simulated by a gyrokinetic model [18]. Using the smallness of electron-ion mass ratio 𝑚𝑒/𝑚𝑖, the electron 

response can be treated by a perturbative expansion. The zero order of the expansion reproduces adiabatic response for the 

electron, and the higher order expansion accounts for wave-particle resonance from parallel and perpendicular motion. 

When generating the requisite datasets for machine learning, each GTC simulation can consume a significant amount of 

computing time. For example, it takes about 6.5 hours to run on the Tianhe-3F supercomputer with 1024 nodes for simulating 

500 time steps for a typical TEM case. Therefore, it is rather expensive to generate a large number of sample datasets. Since 

no collisions are included in the simulation, the TEM mode in the works actually refers to the collisionless trapped electron 

mode or CTEM in the literature [19]. Moreover, in the nonlinear stage, the turbulence quantities fluctuate a lot with time. So it 

is generally not straightforward to train a large number of data from the saturated turbulence and nonlinearly fit these turbulence 

quantities using common AI tools such as machine learning or deep learning. However, in this work we focus on a relatively 

limited goal, i.e., to classify different types of turbulence by their nonlinear properties rather than the linear properties. 

Meanwhile, we find that in order to identify the type of instability with a certain number of parameters using the conventional 

method, a large number of linear simulations is required to find the dispersion relation for determining the instability type by 

comparing results with the linear theory. Figure 1 shows the dispersion relation from the linear simulation for ITG and CTEM, 

respectively. Each data point for the linear frequency or growth rate is computed from the linear simulation, which is 

approximately equivalent to several nonlinear simulations in terms of computing time due to the time-consuming numerical 

filtering procedure in the global particle simulation. 

On the other hand, we note that the support vector machine (SVM) method from the machine learning has the advantage of 

using fewer training datasets to achieve better classification accuracy. Therefore, we here try a different approach and use the 

SVM method on the turbulent quantities from a single nonlinear gyrokinetic simulation to classify the type of the instability. 

Moreover, this approach can be used directly in experiments to fast determine turbulence type in real time without resorting to 

the plasma equilibrium reconstruction and conventional time-consuming linear gyrokinetic simulations. 

 

  

(a) (b) 

Figure 1. Linear dispersion relation calculated by GTC with parameters: (a) 𝑅/𝐿𝑇𝑖 = 6.92, 𝑅/𝐿𝑇𝑒 = 6.92, and 𝑅/𝐿𝑛 = 2.22 

for ITG; and (b) 𝑅/𝐿𝑇𝑖 = 2.22, 𝑅/𝐿𝑇𝑒 = 6.92, and 𝑅/𝐿𝑛 = 2.22 for TEM. 

 



 

 

3. Dataset generation and selection 

3.1. Generation of dataset 

The prevailing drift wave turbulence in tokamaks is simulated by the GTC code in the collisionless electrostatic limit with 

the following cyclone base case parameters [20]: the density 𝑛0 = 0.79 × 1020/𝑚3 , the temperature 𝑇𝑒 = 𝑇𝑖 = 2.22𝑘𝑒𝑉 , 

𝑚𝑖/𝑚𝑒 = 1837, safety factor 𝑞 = 1.4 and magnetic shear 𝑠 = 𝑟𝑑𝑞/𝑞𝑑𝑟 = 0.78 on the reference magnetic surface at 𝑟 = 𝑎/2. 

In the simulation, we change the values for the normalized density gradient 𝑅/𝐿𝑛 = 𝑅0𝑑𝑛/𝑛𝑑𝑟 , normalized electron 

temperature gradient 𝑅/𝐿𝑇𝑒 = 𝑅0𝑑𝑇𝑒/𝑇𝑒𝑑𝑟 and normalized ion temperature 𝑅/𝐿𝑇𝑖 = 𝑅0𝑑𝑇𝑖/𝑇𝑖𝑑𝑟 in the typical 3D parameter 

space with a scanning of 6×6×6 matrix. The corresponding gradient values for each gradient dimension are shown in Table 1. 

 

Table 1. Normalized plasma profile gradients used in the turbulence simulation, where 𝜶 = (𝒏, 𝑻𝒊, 𝑻𝒆) 

# 1 2 3 4 5 6 

𝑅/𝐿α 2.5 4.2 5.93 7.67 9.39 10.9 

 

After skipping 13 sets of plasma gradients with which no instability is found, we used a set of total 203 plasma gradient 

combinations to carry out nonlinear GTC simulations and a large amount of data is produced from the simulated turbulence. 

Then we proceed to classify various electrostatic drift wave instabilities from these turbulence data. First we find that the 

dominant frequencies are away below the electron transit frequency, i.e., ω/𝑘∥𝑣𝑡𝑒~0.02 ≪ 1. Thus, the contribution of the 

passing electrons is dominantly adiabatic and we shall focus on the kinetic response of the trapped electrons. This result is 

further verified by comparing the linear growth rates with and without the passing electrons, as is shown in Figure 2. We can 

see that for all cases, the relative difference between the growth rates is less than 20%. Therefore, with the selected parameters, 

the passing electrons respond adiabatically and contribute little to the instability. So when the electrons are the proactive species 

that drives the instability, the instability can only be considered as the TEM mode, with the ETG mode excluded from the 

candidate instabilities. 

 

Figure 2. The difference of the growth rate between the cases with only trapped electrons and the case with both trapped 

electrons and passing electrons, where γot refers to the growth rate from the cases with only trapped electrons. 

In general, ITG and TEM can co-exist as two branches of the drift wave instability. It is relatively easier to distinguish 

these two instabilities in the parameter regions where only one branch of modes is excited and the other branch of modes is 

purely damping [21]. For example, in Case #161 where 𝜂𝑖 = 𝐿𝑛 𝐿𝑇𝑖⁄ = 1.0 and 𝜂𝑒 = 𝐿𝑛 𝐿𝑇𝑒⁄ = 4.4, the ITG branch cannot 

be excited and this case can only be considered as TEM-dominant; in Case #116 where 𝜂𝑖 = 4.0 and 𝜂𝑒 = 1.0, the instability 

is ITG-dominant. Therefore, we can determine the type for the instability in these parameter regions with minimal efforts. 



 

 

However, for other cases, it is difficult to distinguish between ion mode and electron mode since both of them can be unstable. 

The GTC code uses the 𝛿𝑓 algorithm to calculate linear instability and simulate nonlinear turbulence in a sense of perturbation 

theory [22]. With this 𝛿𝑓 algorithm, The entropy of the particle species α in the simulation is represented by ∬ 𝑑3𝑥𝑑3𝑣𝛿𝑓𝛼
2. 

When the instability grows up, the entropy will keep increasing with time. By comparing the initial growths of the entropy for 

ions and electrons, we can determine which particle species dominates the instability. This unique feature can be used to judge 

whether the type of instability is driven by ions or electrons, i.e., ITG or TEM. 

 

3.2. Sequence selection 

The time history of turbulence amplitude or fluctuating electric potential amplitude 𝜙𝑟𝑚𝑠  is shown in Figure 4 for the 

turbulence formation and evolution. After the linear exponential growth, the potential amplitude 𝜙𝑟𝑚𝑠 saturates at a certain 

level after some transient bursts. In the experiment, we can only measure turbulent data via plasma diagnostics at the fully 

developed turbulent stage. The turbulent phase is often most interesting for analysis and modelling. Therefore, we select the 

simulation data in the well saturated stage to represent the typical turbulence quantities. 

The SVM method from machine learning can be employed to help with the data selection. We choose a short sequence of 

data 𝑥 = {𝑥1, 𝑥2, ⋯ 𝑥𝑠} as an elementary dataset, with 𝑥 the selected physical quantity from the simulation. The input features 

for this SVM procedure are (𝛾(𝑥), 𝑥̅, (𝑥 − 𝑥̅2)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), where γ(𝑥) = (𝑥𝑠 − 𝑥1) 𝑠⁄ , 𝑥̅ is the mean value of the dataset, (𝑥 − 𝑥̅2)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

the mean variance of the dataset. The output for this SVM procedure is the evolution stage of this dataset, namely linear stage, 

turbulent stage and the divergence stage. By using this SVM method, an example of automatic data selection is shown in Figure 

4, with the data between the vertical lines selected as the target data sequence in the turbulent stage. Then we carry out a time 

average for the selected data sequence to obtain one data point. In this way, a total of 1411 data points are generated by varying 

the density and temperature gradients shown in Table 1 and comparing initial growth of the electron and ion entropy, among 

which 826 data points were identified as TEM and the remaining 586 data points were identified as ITG, with a ratio of 

approximately 6:4.  

 

Figure 4. Time history of fluctuating electric potential amplitude 𝜙𝑟𝑚𝑠 during the instability-turbulence evolution. 

3.3. Feature selection 

Next we ought to determine what physical quantities should be selected as the input features for the SVM classification 

algorithm. First, we calculate the correlations between some physically important candidate features: electric potential 

amplitude 𝜙𝑟𝑚𝑠, zonal flow potential 𝜙00
𝑟𝑚𝑠, ion particle diffusivity 𝐷𝑖, ion heat conductivity 𝜒𝑖, and the corresponding electron 

transport quantities 𝐷𝑒, 𝜒𝑒. The correlation coefficient 𝐶𝑜𝑟𝑟(𝛼, 𝛽) for arbitrary physical quantities α and 𝛽 is calculated by the 

following formula: 
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2

𝑖

 (1) 

The resultant correlation coefficients between different physical quantities are shown in Table 2. We notice that 

𝐶𝑜𝑟𝑟(𝜙𝑟𝑚𝑠, 𝜙00
𝑟𝑚𝑠) = 0.89  and 𝐶𝑜𝑟𝑟(𝐷𝑖 , 𝐷𝑒) = 1.00 , which shows that the physical quantities in these pairs can be 

interchanged for each other. This makes physics sense since the zonal flows are self-consistently generated by the turbulence, 

and the radial ambipolarity is well preserved for turbulent particle flux as it should be. Thus, we can remove 𝜙00
𝑟𝑚𝑠 and 𝐷𝑒 from 

the feature list to ensure the independence of each feature quantity. The rest feature quantities have no strong correlations or 

dependences between them and can be considered as independent variables. 

 

Table 2. The correlation coefficients between the selected alternative features. 

 𝜙𝑟𝑚𝑠 𝜙00
𝑟𝑚𝑠 𝐷𝑖 𝜒𝑖 𝐷𝑒 𝜒𝑒 

𝜙𝑟𝑚𝑠 1.00 0.89 0.47 0.38 0.46 0.37 

𝜙00
𝑟𝑚𝑠 0.89 1.00 0.40 0.28 0.40 0.28 

𝐷𝑖 0.47 0.40 1.00 -0.25 1.00 0.33 

𝜒𝑖 0.38 0.28 -0.25 1.00 -0.25 0.10 

𝐷𝑒 0.46 0.40 1.00 -0.25 1.00 0.33 

𝜒𝑒 0.37 0.28 0.33 0.10 0.33 1.00 

 

Finally, we employ the linear SVM method with L1 regularization [23] to conduct the feature selection in the machine 

learning process. This method can reduce the model complexity and thus avoid overfitting. With the penalty coefficient 

C=0.0125, 𝜙𝑟𝑚𝑠 is filtered out of the model. What is more, it is difficult for experimental diagnostics to obtain the electric 

potential fluctuations in the core plasmas due to its extreme high temperature. Thus, even from the experimental point of view, 

it is unfavourable to include 𝜙𝑟𝑚𝑠 in the physics modelling. Next we employ the 5-fold cross-validation [11] to find out that 

the model with the aforementioned three physical quantities is accurate enough for the turbulence classification, as is shown in 

Figure 5. We note that including extra physical quantities would not introduce more accuracy for the classification. Based on 

these arguments, we finally choose three transport coefficients, 𝐷𝑖, 𝜒𝑖, and 𝜒𝑒, as the input features to classify the turbulence 

type. We normalize these features by the gyroBohm diffusivity 𝐷𝑔𝐵 ≡ 𝜌𝑖𝑒𝐵0 𝑎𝑇𝑒⁄ , where 𝜌𝑖 = √𝑚𝑖𝑇𝑖/(𝑒𝐵0)  is the ion 

gyroradius, 𝑎 = 0.36𝑅0 with 𝑎 the tokamak minor radius and 𝑅0 the tokamak major radius and 𝐵0 is the magnetic field at the 

magnetic axis. 



 

 

 

Figure 5. The accuracy of linear SVM classification on the validation set versus the complexity of the physics models. 

 

4. SVM classification results 

In this section, we will use SVM to classify the dataset from two perspectives. First we will classify the instability type using 

the simulation parameters or the instability drives as the input quantities, which is similar to some previous literatures [24,25]. 

And then we use the selected feature quantities from the turbulent stage as the input quantities for classification. In this way, 

we are able to classify the instability type by the turbulence quantities, which caters more to experimental needs. 

4.1. Parameter classification 

We use the python library of Scikit-Learn to implement the SVM algorithm and perform the classification with the simulation 

input parameters first, i.e., the instability drives or the plasma temperature and density gradients. The normalized characteristic 

gradients(𝑅 𝐿𝑛⁄ , 𝑅 𝐿𝑇𝑖⁄ , 𝑅 𝐿𝑇𝑒⁄ ) are regarded as the input features and the type of instability is classified according to the 

aforementioned entropy-based criterion, as is shown in Figure 6, where the blue dots represent TEM-dominant cases and the 

red dots represents the ITG-dominant cases. The dividing plane is found by the linear SVM classification, with an accuracy as 

high as 98%. This demonstrates that the SVM classification can correctly determine the type of instability by using the plasma 

gradient combination. In addition, we can also obtain an analytic formula for the dividing plane with three alternative free 

parameters, 𝑅 𝐿𝑛⁄ , 𝜂𝑒 and 𝜂𝑖:  

 𝑑̃ = 1 −
2.1

𝑅 𝐿𝑛⁄
+ 0.63𝜂𝑒 − 1.0𝜂𝑖 (2) 

It is found that the TEM mode dominates for 𝑑̃ > 0 and the ITG mode dominates for 𝑑̃ < 0. The conclusion is consistent 

with the existing theory that in a toroidal system, the ITG mode is driven by 𝜂𝑖, while larger values of 𝑅 𝐿𝑛⁄  and 𝜂𝑒 tend to 

excite the TEM mode[26]. This analytic formula can help us to fast determine what kind of instability for a given set of 

instability-driven plasma gradients, and also to locate the appropriate parameter region for exploring the ITG-TEM transition 

physics. 



 

 

 

Figure 6. Turbulence classification for the simulation cases with varying gradient drives (𝑅 𝐿𝑛⁄ , 𝑅 𝐿𝑇𝑖⁄ , 𝑅 𝐿𝑇𝑒⁄ ) in the 

parameter space, with the dividing plane generated by the SVM algorithm. 

 

4.2. Turbulence classification 

In many cases, the feature physical quantities during turbulent stage can be measured by advanced diagnostics [27,28]. We 

can directly use these turbulent quantities to classify the type of instability. First, we run a large number of GTC nonlinear 

gyrokinetic simulations by varying the plasma gradients shown in Table 1 and select the desired feature turbulence quantities 

as the training dataset and test dataset by the procedure shown in section 3. In this way, we collected a total number of 1411 

data points for each feature quantity from these nonlinear gyrokinetic simulations. These data are then randomly split into a 

training dataset and a testing dataset with a ratio of 8:2, leading to a total 283 testing data points. Then we use the grid search 

algorithm [29] to determine the proper parameters for the classifier. 

At first the linear kernel is used for the data training. It is found that when the penalty coefficient C=13.5, the SVM algorithm 

on the testing dataset yields an accuracy of 97.17% and on the training dataset it yields an accuracy of 97.52%. We can then 

obtain the following distance formula by using the linear kernel in the Scikit-Learn library, 

 𝑑 = 7.64𝐷𝑖 − 6.06𝜒𝑖 + 4.05𝜒𝑒 + 0.35 (3) 

where 𝑑 represents the distance to the dividing hyper-plane. 

For the training cases, when d > 0, it is found to be the TEM-dominant case, and when d < 0, it is found to be the ITG-

dominant case, as is shown in Figure 7(a). Moreover, a large positive 𝑑 value suggests a turbulence deep in the TEM region, 

and a large negative value of 𝑑 suggests a turbulence deep in the ITG region. We can even make more implications about the 

turbulent properties through the distance formula. For example, in the typical ITG turbulence, the electron particle diffusivity 

𝐷𝑒 and thermal conductivity 𝜒𝑒 ought to be both much smaller than the ion thermal conductivity 𝜒𝑖. Thus, the sign before 𝜒𝑖 

should be negative since the negative value of d is defined as ITG-like in our notation. While in the TEM turbulence, the three 

transport coefficients 𝐷𝑒, 𝜒𝑒 and 𝜒𝑖 are close to each other [28]. Therefore, the positive sign before 𝜒
𝑒
  and negative sign before 

𝜒
𝑖
 suggests that TEM tends to produce more electron heat transport and ITG tends to produce more ion heat transport, which 

is consistent with the fundamental physics, i.e., the turbulent transport are more effectively driven by resonant particles. As a 

matter of fact, the trapped electrons are resonant with the unstable drift waves in TEM and the ions are resonant with the 

unstable waves in ITG.  

Finally, we switch to the radial basis function (RBF) kernel to carry out the turbulence classification. With 𝐶 = 30, 𝛾 = 0.1, 

we obtain an accuracy of 98.23% for the classification. The classification report on test set is shown in Table 3, which 

demonstrates that the classification method developed here has a considerable degree of accuracy. The distribution of the data 



 

 

points and the dividing surface are shown in Figure 7(b). In the test set with 283 cases, all ITG data points and almost all TEM 

data points are correctly classified, and only five TEM data points are incorrectly classified as ITG. All of the five incorrectly 

classified data points were located in the parameter space of the ITG-TEM transition region, which may be the cause of the 

classification difficulties. The nonlinear classification only gives slightly more accurate results than the linear classification, 

which can be seen from the shape of the dividing surface that the linear classification approximation is accurate enough in most 

regions. 

 

Table 3. The turbulence classification accuracy report for SVM with RBF kernel. 

 precision recall F1-score 

ITG dominant 95.90% 100.00% 97.91% 

TEM dominant 100.00% 96.99% 98.47% 

Accuracy   98.23% 

 

  

(a) (b) 

Figure 7. Data distribution of the training set is shown in the (𝐷𝑖 , 𝜒𝑖 , 𝜒𝑒) space with the dividing plane from (a) linear 

classification for the training set; and (b) RBF-kernel classification for both training set and test set. 

 

5. Conclusion and discussion 

In this paper, the machine learning technique based on SVM has been used to classify the nature of turbulence and proved for 

its effectiveness. We use the gyrokinetic code GTC to carry out a large number of linear and nonlinear simulations with Cyclone 

Base Case parameters, and classify the instability type as either ITG or TEM for each linear simulation by inspecting the role 

of the trapped electron in the simulations and comparing the entropy growing of ions with that of electrons. With time history 

of the target physical quantities, the SVM method is employed to achieve automatic data selection. The SVM method has also 

been employed to find an analytic formula for instability classifier with the input as the plasma gradients. We carry out a feature 

selection via correlation analysis and identify the turbulence quantities including 𝜒𝑖, 𝜒𝑒, and 𝐷𝑒 as the feature quantities. These 

feature turbulence quantities have been used to find a second SVM classifier, i.e., the distance formula in Eq. (3), which can 

accurately classify the electrostatic drift wave instability types with accuracies as high as 97.52% and 98.23% with the linear 

and RBF kernel, respectively. Moreover, the obtained distance formulae in Eq. (2) & (3) can also be used to measure the depth 

of the turbulence in the classified region, which is consistent with the current physics understanding for the electrostatic drift 

wave turbulence. In another word, for some given feature turbulence quantities, which could come from the experimental 

diagnostics, we can judge from the distance formula in Eq. (3) whether the turbulence is in the deep ITG region, the deep TEM 



 

 

region or the ITG-TEM transition region. These quantitative judgements may assist experimentalists to regulate fusion plasma 

turbulence in real time.  

There are still some unsolved issues about our discoveries. For example, the ITG-TEM interface in the parameter space is found 

to be a flat plane as is shown in Fig. 6, instead of a curved plane in the parameter space. We further note that in the gyrokinetic 

simulation, physical quantities usually show a high fluctuation level in the turbulent phase, which could lead to a high 

computing cost in building a surrogate model for the turbulent transport, i.e., using nonlinear regression methods such as the 

neural network may not even be computationally feasible. The future work would also include extending the parameter space 

to cover more critical physics, and building a predictive surrogate model for turbulent transport in tokamaks. Another ongoing 

effort is to train a sequential model with a classifier head to predict turbulence types directly from the time sequences of multiple 

measurable signals. 
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