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Abstract

Nonlinear simulations of sawteeth and energetic particle transport are carried out using the kinetic/MHD
hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Fur-
thermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth
crash. The results show that energetic particles are redistributed radially in the plasma core depending on pitch
angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in
agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence
on particle energy. In contrast, the redistribution level of counter-passing particles decreases as particle energy

becomes large.

1 INTRODUCTION

Sawtooth oscillations, first observed in the 1970s[1], are periodic internal magnetic reconnection events which occur in
near axis region in tokamak plasmas. They are mainly caused by internal kink mode with helicity m/n = 1, and are
characterized by repeatedly collapse of the central plasma temperature. Sawtooth oscillations can induce significant
transport of energetic particles(beam ions, bulk particles energized by auxiliary heating, and fusion products). In
burning plasmas such as in ITER|[2] sawteeth can increase alpha particle losses and damage the first wall of fusion
reactors. So far, the sawteeth-induced redistribution of energetic particles has been observed and studied in many

experiments(3, 4, 5, 6, 7, §].



Initial theoretical studies[9, 10] of energetic particle transport due to sawtooth oscillations simply treated energetic
particles as bulk plasmas and assumed that the particles are attached to magnetic flux surfaces. Later, the importance
of toroidal precession drift was demonstrated and a critical energy was found[11, 12, 13], above which the frozen-
in-line condition is broken and the trapped particles are slightly redistributed. This prediction was confirmed in
recent experiments on DIII-D[6]. Finally, resonance between energetic particles and the electromagnetic fields of the
sawteeth was considered[14, 15]. These results have been reviewed in [16]. Also, the effect of high 8 (the ratio of bulk
plasma pressure to the magnetic field pressure) was studied in spherical tori and was found to play an important
role on trapped particles[17].

Two approaches have been used to describe the background sawtooth, which are used to simulate energetic par-
ticle transport. The first approach assumes full magnetic reconnection and applies theoretic models to describe
background sawteeth, and the second approach prescribes electromagnetic perturbation based on experimental mea-
surements. Kolesnichenko et al.[11, 12] simulated energetic particle transport due to a sawtooth which evolved based
on Kadomtsev model[18]. Zhao and White[19] modeled sawtooth mode structure and evolution based on experi-
mental parameters and simulated alpha particle transport in TFTR. They found that the stochasticity of magnetic
field lines was important for alpha particle redistribution. Farengo et al.[20, 21] reconstructed the mode structure
and temporal variation of sawteeth from the experimental data. However there has been little work so far on using
self-consistently evolving background sawteeth to study energetic particle transport.

In this work, the background sawteeth are self-consistently studied by using the resistive MHD model with M3D-
K code and the corresponding energetic particle transport is simulated using test particle approach. Our simulation
results show that energetic particles are redistributed radially in central plasma region and the redistribution level
depends strongly on pitch angle and energy. For the trapped particles, there exits a critical energy above which
particles are weakly redistributed. This result is consistent with existing theories. For the passing particles, the co-
passing particles are strongly redistributed, and the redistribution of the counter-passing particles becomes weaker
as the particle energy increases. The mechanism for the difference in the behaviors between the co-passing and
counter-passing particles is investigated.

This article is organized as follows: Sec. II briefly introduces the code and parameters used in our simulation;
Sec. III describes and analyses the simulation results of sawteeth and related energetic particle transport; Discussion

and summary are given in Sec. IV.

2 M3D-K MODEL AND BASIC PARAMETERS

2.1 Numerical models used in M3D-K

The 3D nonlinear extended MHD code M3D-K is used in our simulation, and the kinetic/MHD hybrid model is

applied in M3D-K which treats thermal ions and electrons as a single fluid and describes energetic particles using



drift kinetic equation. For the MHD part, the dissipative MHD model consists of the full resistive MHD equations
and additional dissipative terms including viscosity and heat conduction as well as sources of particle, momentum,
and heat[22]. In addition, the artificial sound wave method is used to model fast thermal conduction along magnetic
field lines(Eq. (8) and (9) in the Ref. [22]). For the energetic particle part, Particle-In-Cell(PIC) method is
employed[24]. The M3D-K code has been widely applied to study MHD modes and energetic particle instabilities in
tokamaks|[23, 24, 25, 26, 27, 28, 29].

2.2 Parameters and initial profiles

In this work, a circular cross-section tokamak with aspect ratio Ry/a = 4 is simulated, and Spitzer resistivity profile
is n(T) = no(T/Ty) /%, where 19 and Ty are the resistivity and temperature at the magnetic axis. In our simulation,
no = 107° and correspondingly Lundquist number S = 1/19 = 10°. The initial equilibrium is obtained from the
equilibrium code VMEC. The pressure profile is given by p(¥) = p[0.75(1 — ¥) + 0.25exp(—¥/0.25)] , where ¥ is
the normalized poloidal flux variable varying from 0 at axis to 1 at the edge of the plasma, central thermal beta
Bo = 4.38%, The safety factor profile is given by

(1 - ‘Ils)(‘ll B 1)

e (1)

q(¥) =qo+ ¥lg1 —qo + (¢) — q1 + qo)

where U, = (g1 —q1 +90)/(¢0+4d1 —2¢1 +2q0), g0 = 0.7, ¢1 = 3.6, ¢(, = 2.0, and ¢; = 5.0. Fig. 1 plots the equilibrium

pressure and ¢ profiles.
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Figure 1: Equilibrium profile of pressure and q.



Energetic particles are loaded with discrete values of pitch angle and energy and are distributed exponentially in

radial direction,

f= Zexp(— (W) /0.25)8(E — E;)6(A — A;), (2)

where A = By/FE is the pitch angel, and (¥) is ¥ averaged over the particle orbit. Using the definition of toroidal

angular momentum, we obtain
M By
U = — -
) =pofe - (uRG). 3)

where e and M is the particle charge and mass respectively. We use the following approximations for simplicity[24],

<v||R%> ~0 (4)

<v||R%> ~ sign(v)vRo\/1 — uBo/E (5)

for passing particles, where By and Ry is the magnetic field amplitude and major radius at the magnetic axis

for trapped particles and

respectively.

3 SIMULATION RESULTS AND ANALYSIS

3.1 Numerical Results
3.1.1 Background sawteeth results with M3D code

In this section we present the MHD simulation results using M3D code. The linear simulation of the given equilibrium
finds an unstable kink mode with dominant mode number n = m = 1. The mode structure is shown in FIG. 2.
We observe that the mode is mainly located inside the ¢ = 1 rational surface. The calculated linear growth rate
is y74 = 0.0283, where 74 is the Alfvén time: 74 = Ry/Va. Furthermore, the mode is ideally unstable with
y7a = 0.544% at n = 0. As shown in FIG. 3, for S ranging from 3.33 x 10* to 109, the linear growth rate scales as

S—1/3. According to Ref. [30] the mode is a resistive internal kink although this mode is ideally unstable.



Figure 2: Velocity stream function U of the eigenmode.
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Figure 3: The linear growth rate versus Lundquist number S. S = 3.33 x 10, 10°, 3.33 x 10°, 10° respectively.

Now we turn to the nonlinear study with M3D code. To initialize the nonlinear simulation, the current and heat
sources are prescribed to maintain the equilibrium current and pressure profiles steady state without 3D perturbation.

The 3D nonlinear simulation starts with an n = 1 perturbation which evolves into an n = 1, m = 1 internal kink



instability. FIG. 4(a) shows the evolution of the total kinetic energy and the central temperature T(0). Here time
is normalized as the Alfvén time 74. We observe that periodic sawtooth oscillations are successfully simulated. It
should be noted that the first sawtooth crash has a much larger kinetic energy as compared to those of subsequent
crashes because it depends on details of the initial conditions. Therefore we determine the sawtooth period from
the subsequent repeated sawtooth crashed. This gives the sawtooth period around 32874. As shown in FIG. 4(b),
toroidal modes up to n=6 are kept in our simulation, different mode are coupled together with the n = 1 mode being

the dominant one.
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Figure 4: (a) Evolution of total kinetic energy and T(0). In the next section energetic particle transport is simulated

from t = 97074 to ¢ = 130574. (b) Evolution of kinetic energy of different toroidal number n.

Our results show that the resistive internal kink mode results in complete magnetic reconnection in a sawtooth
crash similar to the Kadomtsev model[18]. Time evolution of the magnetic flux surfaces during one typical sawtooth
cycle is shown in FIG. 5. First, a magnetic island forms around the ¢ = 1 rational surface. Then, during the growth

of the magnetic island, the sawtooth crash mixes the central plasma region with the outer region, resulting in cooling



of the core. As the current source drives the safety factor q below unity in the central region and the pressure source
heats up the cooled core region, the magnetic surfaces are almost recovered in the core region and the magnetic

island becomes the new axis. Then the sawteeth cycle repeats again.
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Figure 5: Poincaré plots of magnetic surfaces at ¢ = 7/2 shows the evolution of sawteeth during one period. (a)
Initial state: ¢ = 97074. (b) Before second crash: ¢ = 103074. (c) Island growing: ¢ = 110074. (d) After second
crash:t = 114574. (e) Nonlinear phase: ¢ = 122074. (f) Final state: ¢ = 130574. (a) and (f) corresponds to mostly

recovered flux surfaces.

3.1.2 Energetic particle transport using M3D-K code

We now present the results of energetic particle transport due to a sawtooth. The background sawteeth is self-
consistently simulated using the resistive MHD model as shown above. The magnetic surfaces at t = 97074 and
t = 130574 are mostly recovered(as shown in FIG. 5(a) and FIG. 5(f)), so the energetic particle redistribution is
simulated within this time period and the crash time of the sawtooth cycle is around 11574 (from ¢ = 103074 to
t = 11457,).

Here we briefly interpret the physical picture of energetic particle transport given by Kolesnichenko et al.[11, 12].
The energetic particles are assumed to have small orbit width Ar, < 7,2, where Ary, is the particle orbit width and
Tmiz 18 the sawtooth mixing radius. Considering the bounce-averged motion of a particle, there are three characteristic
time scales to determine the property of energetic particles’ transport due to a sawtooth: (1) the toroidal precession
duration 7,, which is related to the particle toroidal drift motion, (2) the longitudinal time 7y which represents
for the characteristic time of the bounce-averaged motion along the helical perturbed flux surfaces, (3) the crash
time 7., which is the duration of the F x B drift motion. If the sawtooth crash is sufficiently fast(7., < 7,,),
energetic particles are attached to magnetic field lines and move together with the evolving flux surfaces due to the

E x B drift, but the redistribution is weakened by the toroidal precession drift as the particle toroidal precession



motion leads to strong phase mixing and decorrelation between the particle motion and the sawtooth, whereas the
effect of the toroidal precession motion is weakened by the particle longitudinal motion. For the trapped particles
Tv = Tpr/ ¢ — 1|, and for the passing particles 7¢ = 7/ |¢ — 1|, where 7, is the particle transit time. As in our
simulation, during one sawtooth period, q is almost unity inside the sawtooth range, so we just need to compare 7,
with 7., and the condition for weak redistribution is: 7,, < 7.

Also the third adiabatic invariant could be applied to get the condition above. when 7,, < 7., the third adiabatic
invariant J; = f vgdl is almost unchanged, as a result particles are weakly redistributed. 7, = 7, gives the critical
energy of trapped particles,

Eerit = 2nMEsrsRowp [ Ter, (6)

where M is the ion mass, k is the ellipticity, wp is the cyclotron frequency and the subscript ’s’ means the values at
the q=1 flux surface.

Energetic particles are loaded as given in Eq. (2), and the redistribution level of different type of energetic
particles is shown in FIG. 6, and the redistribution level is defined as

_ [1f(@) = f(t =97074)| dPy
/IéfIdP¢//fdP¢ T [ ft=97074)dP, "

here P, = py/e represents the particle radial position, and energy is normalized by E.,;; which is calculated according
to Eq. (6). E..;+ corresponds to
vp/va = 0.7275, pp/a = 0.04656, (8)

where vy, and pj, are the velocity and gyroradius of the particles with energy equals E;..

From FIG. 6 the results show that energetic particles are redistributed depending on pitch angle and energy. For
the trapped particles and counter-passing particles, the redistribution level decreases as the particle energy becomes
large. For the co-passing particles, the redistribution is strong with little dependence on the particle energy. Detailed
distribution functions of energetic particles with three discrete energy at ¢ = 97074 and ¢t = 130574 are shown in
FIG. 7. In the following v denotes for the poloidal flux. As the orbit width is small for the 0.25F,,;; particles,
According to Eq. (3), (4) and (5), compared to the initial distribution at ¢ = 97074, the distribution for all types of
particles at ¢ = 130574 is reduced for (¢) is less than -0.247, and increased with (1)) € [—0.247,—0.2] , and is almost
unchanged where (¢) is larger than -0.2. As the ¢ = 1 surface is located at ) = —0.247, and the sawtooth boundary
is found to be around ¥ = —0.2, so energetic particles inside ¢ = 1 surface is transported out of the ¢ = 1 surface
due to magnetic reconnection effect, and the radial range of the redistribution is inside the sawtooth region.

Time evolution of the redistribution level is shown in FIG. 8, from which we can see that after the sawtooth
crash(t = 11457,4), energetic particles are still transported and the redistribution level becomes saturated around
t = 122074. As shown in FIG. 5(e), at t = 122074 the new magnetic axis forms and the change of magnetic flux

is relatively small from ¢ = 122074 to t = 130574. Since the redistribution of energetic particles is as a result of



particles moving with the magnetic flux surfaces, the redistribution level of energetic particles are almost unchanged

during this time period.
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Figure 6: Redistribution level of different type of energetic particles versus energy. Energetic particles are loaded

with 16 equidistant energies from E.,;:/4 to E..;z. Pitch angle of trapped particles is A = 1.0, and of both co-passing

and counter-passing particles is A = 0.0.
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Figure 7: Distribution function of different type of energetic particles with different energy at initial state and final

state. (a) Co-passing particles. (b) Counter-passing particles. (c) Trapped particles.
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3.2 Analysis of results on trapped particles

For trapped particles, as mentioned above, the ¢ = 1 surface is located at ©» = —0.247. FIG. 9 shows the precession
frequency of trapped particles as a function of energy and averaged 1. Averaged ¢ is defined as (Va2 +¥min ) /2,where
Wmaz and P, is the maximum and minimum of poloidal flux for a particle to go through in one bounce/transit
period. When the energy of the trapped particles is larger than 0.8F,,;;, the particles inside the ¢ = 1 surface have

strong toroidal precession drift and they would be weakly redistributed, as the red line shown in FIG. 6.
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Figure 9: Precession frequency of trapped particles. The dashed line(black) shows ¢ = 1 surface location, and the

solid line(white) represents for wp, = 27 /7., and the solid line and the dashed line intersects around 0.8 E¢y;.

To investigate the scaling of the critical energy, we scan the sawtooth crash time by varying resistivity. The results
of the redistribution levels of trapped particles from such a scan are shown in FIG. 10(a), here E.,;; is normalized
by different crash time of the background sawtooth. We denote redistribution level as g = [|6f|dpy/ [ fdps, and
define the critical energy in our simulation as the first point when |9g/0FE| < 0.02, and is labeled as Eg;,, and
relationship between FEy;,,, and the crash time is shown in FIG. 10(b). We observe that that the critical energy from
our simulations is approximately inversely proportional to the crash time as previously predicted|[11] (see Eq. (6)).
Also from Eq. (6), the critical energy of trapped particles is independent of the particle mass. This is confirmed by

our simulation results as shown in FIG. 11.
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Figure 10: (a) Redistribution level of trapped particles due to sawteeth with different crash times. (b) Reciprocal of

Egim as a function of crash time. Ej;,, is normalize by v3 /2, where vy = evs = ava/Ro.
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3.3 Analysis of results on passing particles

When the orbit width Ar, of passing particles is small (Ar, < r, where r is the radial coordinate) and the plasma
cross section is circular, the precession frequency is given by[31][32]

,U2

Wpr = 5% = aF + o,bm'/2E3/2, 9)

where
1 1_3A'_7‘A” 0@)
q 2¢ 2¢ Y re
wpo = eBy/Mc with By = B(r = 0), p = v/wpo, A" = dA/dr, A" = d>A/dr? and o, = sign(v). From Eq. (9)

(10)

)

we see that the precession frequency of co-passing and counter-passing particles is quite different and the difference
becomes larger when particle energy increases.
Comparison of precession frequency of passing particles calculated from Eq. (9) and from our simulations is

shown in FIG. 12, they are almost the same within the ¢ = 1 surface.
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The precession frequency of passing particles inside the ¢ = 1 surface is shown in FIG. 13. For the co-passing
particles, inside this region wy,, < 27/7., so the co-passing particles are strongly redistributed. In contrast, the
precession frequency of the counter-passing particles are much larger than the co-passing particles, and when the

energy of the counter-passing increases, wy,, would exceed 27 /7., and correspondingly the redistribution level of the

counter-passing particles is weakened.
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Figure 13: Precession frequency of passing particles. (a) Co-passing particles. (b) Counter-passing particles. In the

figure the solid line(white) represents for wp, = 27/7c,.

As shown in FIG. 6, the counter-passing particle redistribution level decreases graduately with energy. For this
reason we define Eg;,, of the counter-passing particles roughly as the first point at which the redistribution level is
less than 50% of the redistribution level of the counter-passing particles with energy equals 0.25F.,.;;. From Eq. (9)
and the condition wy,, = 27/7,, the critical energy of counter-passing particles would decrease when the sawtooth
crash time increases, and this is verified in FIG. 14. Also according to Eq. (9), the critical energy of counter-passing
would depend on the mass, which is different from that of trapped particles. This is also confirmed in our simulations

as shown in FIG. 15.
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and ms = 1 corresponds to baseline case.

As shown in FIG. 16, the redistribution level of the counter-passing particles with different pitch angle A has
similar trends as energy increases. When the energy of the co-passing particles is sufficiently large, the redistribution
level would decrease either but much slower than the counter-passing particles. Since pp/a is less than 0.1 for present
tokamak devices and future tokamak reactors, we focus on the particles with energy less than 4F,..;;, and in this
energy range the co-passing particles are strongly redistributed.

The difference between the redistribution of co-passing and counter-passing particles is also found recently by
Farengo et al.[21]. Actually they found with ITER-like parameters, the co-passing particles are redistributed weaker
than the counter-passing particles, and they mentioned that the opposite could happen if the mode is propagating
with another direction. In our simulation the mode frequency is almost zero, and if the mode is propagating with
finite frequency, the condition wy, = 27/, is changed to |wp, + w| = 27/7,,, where w is the mode frequency. With
this condition we could also explain the different redistribution level of passing particles when the direction of mode

propagation is changed as the sign of w is changed.
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Figure 16: Redistribution level of co-passing and counter-passing particles with A = 0.0, 0.2, 0.4.

4 DISCUSSION AND CONCLUSION

In conclusion, we have carried out nonlinear simulations of sawteeth and energetic particle redistribution due to a
sawtooth in tokamaks. In MHD simulations, we have showed repeated sawtooth oscillations similar to the Kadomtsev
model for a model tokamak equilibrium. Furthermore, the M3D-K code is used to investigate energetic particle
transport due to a sawtooth. The results show that energetic particles are mainly redistributed radially in central
plasma region, and the distribution is reduced inside the ¢ = 1 surface, and increased from the ¢ = 1 surface to the
sawtooth boundary , and is almost unchanged outside the sawtooth range, so energetic particles inside the ¢ = 1
surface is transported out of the ¢ = 1 surface due to magnetic reconnection effect, and the radial range of the
redistribution is inside the sawtooth region.

In addition, the redistribution level depends on particle pitch angle and energy. For the trapped particles, there
exists a critical energy above which particles are weakly redistributed, and the critical energy is approximately
inversely proportional to crash time and independent of particle mass. These results are consistent with existing
theories. For the passing particles, previous work showed that passing particles are strongly redistributed inside the
sawtooth region. In our simulation, strong redistribution of the co-passing particles is consistent with previous pre-
diction. In contrast, the redistribution level of the counter-passing particles has a much stronger energy dependence.
The redistribution level decreases as particle energy increases. The difference between redistribution behavior of
the co-passing and counter-passing particles is due to the difference in their precession frequencies. The precession
frequency of the counter-passing particles is much larger than that of the co-passing particles leading to a stronger

energy dependence of the counter-passing particle transport.
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