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Adopting the ballooning-mode representation and including the effects of radial envelope modu-
lations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-
electron mode (CTEM) in tokamak plasmas. Numerical solutions of the eigenmode equation indicate
that finite radial envelope modulations can affect the linear stability properties both quantitatively
and qualitatively via the significant modifications in the corresponding eigenmode structures.
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I. INTRODUCTION

Micro-turbulence driven by drift-wave instabilities is
considered to play important roles in the anomalous
transport of tokamak plasmas [1]. Two of the most pre-
vailing drift-wave instabilities in the tokamak core region
are generally believed to be the ion temperature gradient
(ITG) mode and the collisionless trapped-electron mode
(CTEM). Although known for decades of years [1, 2], the
linear and nonlinear properties of these modes are still
being actively investigated both theoretically and exper-
imentally. Specifically, the effect of finite radial enve-
lope modulation, i.e., finite θk = i(nq′)−1∂r lnA, on ITG
modes has recently received a renewed interest in fusion
research [3, 4]. Here, n, q′ and A are, respectively, the
toroidal mode number, the radial derivative of safety fac-
tor q and the radial envelope. It is found that, depending
on specific parameters, the most unstable ITG modes can
have a finite θk and poloidally balloon at the top or bot-
tom of tokamaks. On the other hand, although it has
been generally anticipated that the CTEMs are most un-
stable at θk = 0 [5–10], there is, to our knowledge, no
rigorous investigation to confirm this anticipation. The
main purpose of this paper is, thus, to carefully examine
the effect of finite θk on the linear stability properties of
CTEMs. Such a fundamental study is important because
both the finite radial envelope modulation and the linear
stability properties play significant roles in the nonlin-
ear dynamics of CTEMs. Our results indicate that finite
θk can modify the CTEM linear stabilities both quan-
titatively and qualitatively via significantly altering the
corresponding eigenmode structures.

The theoretical model and the corresponding CTEM
eigenmode equation are presented in Sec.II. Sec.III con-
tains the numerical results, demonstrating the finite θk
effects on the linear stabilities and eigenmode structures.
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Summary and discussions are given in Sec.IV.

II. THEORETICAL MODEL

We consider the electrostatic collisionless trapped-
electron modes in an axisymmetric, low-β (β = 8πP/B2),
large aspect-ratio (a/R0 ≪ 1) tokamak with concentric
circular magnetic surfaces, and we use the usual minor
radius (r), poloidal angle (θ), and toroidal angle (ζ) co-
ordinates. The equilibrium magnetic field is given by
~B = B0[(1 − ǫ cos θ)êζ + ǫ/qêθ], with ǫ = r/R0 ≪ 1
and R0 the major radius. The particle equilibrium dis-
tribution function is taken to be local Maxwellian, F0,j =

n0(πv
2
tj)

−3/2e−v2

, with v = V/vtj , vtj =
√

2Tj/mj and
j = i, e denoting the particle species. Meanwhile, we
adopt the well-known ballooning representation [11, 12]
for the fluctuations, e.g., for the perturbed electrostatic
potential:

δφn = e−iωt−inζ
∑

m

eimθ

×

∫ +∞

−∞

∫ +∞

−∞

dηdθke
i(nq−m)η−iθknqΦ̃(η, θk).

(1)

In Eq. (1), in contrast to the previous investigations
[2, 5–7], the present representation contains the finite θk
effect. Assuming the usual drift ordering ωte > ωbe ≫
ω ≫ ωti, ωdi and following standard procedures [2, 7], the
eigenmode equation can be derived straightforwardly as

[D1∂
2
η + (∂ηD1)∂η +Q(η, θk)]Φ̃(η)

=

√

ǫ

2

∫ 1

sin2 η
2

dκ2

K(κ)
√

κ2 − sin2 η
2

Ω3[(Ω− 1)T1 + ηeT2]

ǫnHΩ2
t

×
+∞
∑

j=−∞

∫ 2jπ+π

2jπ−π

δ(η − η′)dη′
∫ 2jπ+η0

2jπ−η0

Φ̃(α)dα
√

κ2 − sin2 α
2

,

(2)
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with

Q =
2Ω2

Ω2
t

{Ω(1 + τ) −D1 + ηiΓ0 +
Ω2

t

4Ω2
(∂2

ηD1 +D3)

+
ǫnD2

τΩ
[s(η − θk) sin η + cos η]},

D1 = (τΩ + 1)Γ0 + ηi[biΓ1 − (bi − 1)Γ0],

D2 = (τΩ + 1)[2Γ0 + bi(Γ1 − Γ0)]

+ηi[2(bi − 1)2Γ0 + (3− 2bi)biΓ1],

D3 = k4θρ
4
i s

4(η − θk)
2{(τΩ + 1)(Γ0 − Γ1)

+ηi[(3− 2bi)Γ0 + 2(bi − 1)Γ1]},

T1 =







−[1 +
√

Ω
ǫnH

Z(
√

Ω
ǫnH

)] if H ≥ 0,

−[1 + i
√

Ω
ǫn|H|Z(i

√

Ω
ǫn|H| )] if H < 0,

T2 = T1(
3

2
−

Ω

ǫnH
) +

1

2
.

Eq. (2) corresponds to the quasi-neutrality condition.
In deriving Eq. (2), ions are approximated as a flu-
id but keeping the finite ion Larmor-radius corrections,
and circulating electrons are taken to be adiabatic. The
right hand side of Eq. (2) contains the bounce-averaged
trapped-electron response. Note also that Eq. (2) has

the symmetry properties Φ̃(−η| − θk) = ±Φ̃(η|θk) and
Ω(−θk) = Ω(θk). Thus, the eigenvalue has an extreme
point at θk = 0. The physical parameters are standard-
ly defined: τ = Te/Ti, 2bi = k2θρ

2
i [s

2(η − θk)
2 + 1], kθ =

nq0/r0, r0 is the reference mode-rational surface, ρi is the
ion gyroradius, and s = rq′/q at r0 is the magnetic shear.
Meanwhile, ǫn = rn/R0 with rn = |∇n0/n0|

−1 is the den-
sity scale length, and ηi,e = d lnTi,e/d lnn0. The frequen-
cies have been normalized by the electron diamagnetic
drift frequency ω∗e = kθcTe/(eB0rn), that is, Ω = ω/ω∗e,
Ωt = 2ǫn/(τqkθρi). Γn = In(bi)Exp(−bi) with In being
the modified Bessel function. In the trapped-electron ter-
m, η0 = 2 arcsinκ is the turning point of a given trapped-
electron. H = 4ŝ[E(κ)/K(κ)+κ2−1]+[2E(κ)/K(κ)−1]
is associated with the trapped-electron’s precessional fre-
quency, with K(κ)(E(κ)) designating the complete ellip-
tic integral of first (second) kind. Z is the plasma dis-
persion function, and the branch cut of the square-root
function in T1 is chosen to be the nonpositive imaginary
axis.
With the outgoing-wave boundary condition [13], Eq.

(2) determines the linear stability properties of CTEM-
s in toroidal plasmas. As reported in [14, 15], owing
to the non-uniformity of the toroidal field over a mag-
netic surface, there exist two branches of the electron
drift eigenmodes in toroidal plasmas: one is slab-like and
the other is toroidicity-induced. The slab-like modes are

fast oscillating unbounded states along the field line, and
experience finite magnetic shear damping effect. Since
the fast variation will be averaged out by the bounce
motion, the slab-like modes are, typically, CTEM sta-
ble. The toroidicity-induced modes, on the other hand,
are characterized by quasi-bounded states with expo-
nentially small shear damping through tunnelling leak-
ages. Thus, the toroidicity-induced modes are expected
to be destabilized by trapped-electron collisionless or col-
lisional dissipations [7]. The quasi-bounded toroidicity-
induced eigenmode structures can be further classified
according to their eigenmode number l, i.e., the num-
ber of nodes along the field line. The eigenmodes with
large eigenmode numbers will not be significantly desta-
bilized by the trapped-electrons due to, again, their fast
variation along η. Therefore, only the low-l toroidicity-
induced eigenmodes are relevant to the trapped-electron
instabilities.

III. NUMERICAL RESULTS

To study the finite θk effect, we numerically solve the
integro-differential eigenmode equation by using a new
eigen-solver [16], which can locate all of the eigenval-
ues in a closed complex domain. For the θk = 0 case,
the toroidicity-induced modes possess even and odd par-
ities. While the even modes can be efficiently destabi-
lized by the trapped-electrons, the odd modes are sta-
ble, because the trapped electrons bounce average out
the fluctuations. Depending on the parameters, the even
toroidicity-induced modes can be further categorized in-
to two types [14]: the strong toroidicity-induced modes
peaking around η = 0, and the weak toroidicity-induced
modes peaking away from η = 0.
Figure 1 plots the dependence of the eigenfrequency ,

Ω = Ωr + iΩi, on θk for the even- and odd-parity eigen-
modes. The parameters are given in the caption. The
corresponding eigemode structures for four different val-
ues of θk, meanwhile, are given in Figs. 2 and 3 for
the even- and odd-parity eigenmodes, respectively. Note
that the parity is referred to the limit of θk = 0. Fig-
ure 2 shows that the θk = 0 even mode is peaked at
η = 0, confirming it being a strong toroidicity-induced
eigenmode. Figure 1 demonstrates that the finite θk
has indeed a stabilizing effect on the even-parity strong
toroidicity-induced mode, consistent with previous stud-
ies [5–10]. The odd mode, however, is destabilized by the
finite θk and the growth rate Ωi increases with θk, until
it eventually becomes the dominant instability. Figure 2
explains why the even-parity mode is stabilized by the
finite θk. Note that at θk = 0 the eigenmode structure
peaks at η = 0 and, thus, taps the maximum of the
trapped-electron instability drive. As θk increases, how-
ever, the eigenmode begins to peak away from η = 0,
and, correspondingly, taps less trapped-electron instabil-
ity drive. Therefore, the even-parity strong toroidicity-
induced mode experiences finite θk stabilization.
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FIG. 1: (Color online) Plots of the eigenfrequencies
versus θk for the even (blue) and odd (red) parity

strong toroidicity-induced eigenmodes. The parameters
are τ = s = ηi = 1, q = 1.5, ǫ = 0.2, ǫn = 0.4,

kθρi = 0.2, ηe = 2. Solid (dashed) lines are the real
frequencies ( growth rates).
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FIG. 2: (Color online) Plots of eigenmode structures of
the even-parity strong toroidicity-induced modes for
θk = 0 (blue), θk = 0.5 (red), θk = 1.0 (green) and

θk = 1.63 (black). The solid (dashed) lines correspond
to the real (imaginary) components. The parameters

are the same as Fig. 1

The finite θk destabilization of the odd modes can be
understood in a similar way. As shown in Fig. 3, the
mode has an odd parity at θk = 0, and, hence, cannot be
excited by the trapped electrons, due to the bounce av-
eraging. However, as θk increases, the eigenmode struc-
ture breaks its odd parity, and, thereby, experiences finite
trapped-electron instability drive. As θk further increas-
es, the eigenmode structure peaks toward η = 0, where
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FIG. 3: (Color online) Plots of eigenmode structures of
the odd-parity strong toroidicity-induced modes for
θk = 0 (blue), θk = 0.5 (red), θk = 1.0 (green) and

θk = 1.63 (black). The solid (dashed) lines correspond
to the real (imaginary) components. The parameters

are the same as Fig. 1

the trapped-electron instability drive also peaks. Con-
sequently, as shown in Fig. 1, the odd mode can be
significantly destabilized at finite θk.
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FIG. 4: (Color online) Plots of the eigenfrequencies
versus θk for the even-parity weak toroidicity-induced

eigenmode. The parameters are τ = s = ηi = 1, q = 1.5,
ǫ = 0.2, ǫn = 0.3, kθρi = 0.6, ηe = 3. Solid (dashed) line

is the real frequency (growth rate).

Similar analyses can be done for the even-parity weak
toroidicity-induced mode. Figures 4 and 5 show the plot-
s of, respectively, the eigenfrequencies and eigenmode
structures versus θk. Note, from Fig. 5, that the even-
parity mode peaks away from η = 0 at θk = 0, confirming
that it corresponds to a weak toroidicity-induced mode.
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FIG. 5: (Color online) Plots of eigenmode structures of
the even-parity weak toroidicity-induced modes for
θk = 0 (blue), θk = 0.5 (red), θk = 0.75 (green) adn

θk = 1.50 (black). The solid (dashed) lines correspond
to the real (imaginary) components. The parameters

are the same as Fig. 4

Figure 4 indicates that, as θk increases, the instability
growth rate also increases significantly. Again, the finite
θk destabilization can be understood, as shown in Fig.
5, in terms of shifting of the eigenmode structure toward
η = 0, where the trapped-electron instability drive is lo-
calized. The odd-parity weak toroidicity-induced mode
is not shown here as its behavior versus θk is similar to
that of the odd-parity strong toroidicity-induced mode.

IV. SUMMARY AND DISCUSSIONS

In this study, we have derived an integro-differential
eigenmode equation for CTEMs in toroidal plasmas, in-
cluding the effect of finite radial envelope modulations,
i.e., the effect of finite θk. We have solved the eigen-

mode equation numerically for the eigenfrequencies and
the corresponding eigenmode structures. Our results in-
dicate that the finite θk can modify the linear stabili-
ty properties both quantitatively and qualitatively. The
reasons are the finite θk can break the parity symmetry
as well as shift the eigenmode peak toward or away from
η = 0, where the bounce-averaged trapped-electron in-
stability drive is concentrated. More specifically, we find
that, for the even-parity strong toroidicity-induced mod-
e, which peaks at η = 0 when θk = 0, the peak shifts
away from η = 0 as θk increases. On the other hand,
for the odd parity mode, which is stable when θk = 0,
it is destabilized as θk increases, due to the peak being
shifted toward η = 0. A similar picture also holds for the
even-parity weak toroidicity-induced mode, which has its
two peaks located away from η = 0 when θk = 0. As θk
increases, the peaks merge and shift toward η = 0, and,
thereby, the mode is further destabilized. The odd-parity
weak toroidicity-induced mode, meanwhile, has a simi-
lar behavior versus θk as that of the odd-parity strong
toroidicity-induced mode.
Finally, we remark that the present findings of the

finite θk effects on the linear stability properties have
fundamental implications to the nonlinear dynamics of
CTEM, since both the CTEM-Zonal flow interactions
[17, 18] and the nonlinear mode-mode coupling processes
[9, 10, 19] depend crucially on the radial envelope modu-
lations, i.e., the finite θk effects. Detailed investigations
on these nonlinear processes will be reported in a future
publication.
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