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1. Introduction

The electrostatic potential in a sufficiently close vicinity of a free electron is the well-

known single-particle Coulomb potential [1, 2]. Since in a plasma the number of moving

charges contributing to the field at any point in space is extremely large, the combined

potential field at the location of a given electron varies rapidly in time. An exact

description of the fluctuating microfield near any given electron is therefore rather

difficult. However, usually only the averaged, say over a time that is large with respect

to the microfield timescale and a volume large enough to include a sufficiently large

number of particles, field is of practical interest [1]. Because of the presence of many

other electrons, the field of any individual electron in a plasma or other electronic

medium is heavily shielded. The so-called Debye shielding [1, 2] greatly shortens, namely

exponential decay instead of inversely proportional to the distance away from the charge,

the range of the Coulomb interaction potential of a charged particle in plasma. It is one

of the most important characteristics of plasmas [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

It is also closely related to the effect of charged grains in dusty plasmas [14, 15, 16], as

well as satellites and re-entry vehicles in space and the ionosphere [17, 18, 19].

However, the expression (Coulomb potential with exponential decay) for Debye

shielding of a charged particle has been obtained assuming that the latter is

infinitesimally small and stationary, and the background plasma is in thermal

equilibrium. Partial breakdown of Debye shielding can also occur for test charges in

various situations, such as when it is moving or when the plasma is inhomogeneous,

anisotropic, collisional, magnetized, etc. [3, 4, 5, 6, 7, 9, 11, 12, 13]. In earlier works

[11, 12] by Lennart Stenflo and one of us on the electrostatic shielding of a slowly

moving test charge in a plasma with collisions described by the Bhatnager-Gross-Krook

(BGK) model [1, 20, 21], we found that in certain parameter regimes Debye shielding

can break down and the charge can become completely unshielded along the direction of

its motion. Such a phenomenon could affect theories of charged-particle collisions that

invoke Debye cutoff of the interaction range. Recently, two of us [24, 25, 26] considered

one-dimensional nonlinear disturbances excited by two finite moving identically charged

pulses, and found that under conditions that are still not fully understood, almost perfect

shielding can take place [24]. It is therefore of interest to see if two co-moving point

charges in three dimensions can also become fully shielded. In this work we consider this

problem by following the approach of [11]. For the cases considered, our results show

that the far-field shielding behavior of two test charges remains qualitatively similar to

that of a single charge.

2. Formulation

The kinetic equation for the electron distribution function f(x,v, t) with the BGK

collision operator [1, 21, 20] is

∂tf + v · ∇f + (e/m)∇ϕ · ∇vf = ν(f − fM), (1)
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where −e, m and v are the charge, mass, and velocity of the electrons, ϕ(x, t) is

the electrostatic potential, ν is the electron-neutral collision frequency, and fM is the

local Maxwellian distribution, where the density, mean velocity, and temperature are

determined from the respective velocity moment integrals. Compared to the Fokker-

Planck and other more realistic models [1, 22, 23] for charged particle collisions, the

BGK model tends to overestimate the effect of collisional relaxation or transport since

the participating particle becomes thermalized after a single collision event. The BGK

model is nevertheless frequently invoked because of its simplicity and the observation

that the expressions for the major transport coefficients such as the viscosity and thermal

conductivity, in particular their dependence on the plasma parameters, derived from it

are qualitatively similar to that from the more realistic models [21]. However, the full

BGK model involves an integral-partial differential equation and is tedious to handle

[11, 21]. A further simplification is realized in the popular reduced-BGK, or the Krook,

model, in which the mean velocity and temperature in the Maxwellian distribution

are fixed to the initial, or background, values. As a result, only the number, but not

the momentum and energy, of the particles in a collision event is conserved. It has

been shown that for problems not involving transport, in particular that of test-charge

shielding, the Krook model yields results that are remarkably close to that from the

full BGK model that conserve particle number, momentum, and energy in collisions

[1, 11, 21].

For collisions between the electrons and neutral particles, we shall use the Krook

collision model [1, 11, 21]. We assume for simplicity that the two test charges are of the

same velocity, so that the distance between them does not change. The electrostatic

potential ϕ(x, t) of the plasma response is then given by the Poisson’s equation

ε0∇2ϕ(x, t) = en1 − q1δ(x− v0t)− q2δ(x− x0 − v0t), (2)

where n1 = n− n0 is the electron density perturbation, n0 is the ion density, −e is the

electron charge, qj = Zje is the charge of the test particle j = 1, 2, v0 is the velocity

of the test charges, and x0 the distance between them. We have assumed that v0 ≪ c,

where c is the light speed, so that electromagnetic effects can be neglected.

The plasma ions are unperturbed by the test charges, so that n0 is constant. The

response of the plasma electrons to the two moving and non-interacting point charges

is small and can be assumed to be linear [5, 7, 11, 12, 13]. The solution ϕ(x, t) then

follows straightforwardly from that [11] of a single test charge and can be written as

ϕ(x, t) =
1

8π3ε0

∫ eik·(x−v0t)[q1 + q2e
ik·x0 ]

k2D(k,−k · v0)
dk, (3)

where the dielectric function of the plasma response is [11]

D(k, ω) = 1 +
1

k2λ2
D

− 1

k2λ2
D

ωF/n0

1− iνF/n0

, (4)

with F =
∫
dvf0/(ω + k · v + iν). The second term is from the adiabatic electron

response that when alone gives rise to the Debye shielding potential.
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We can see in (3) that except for the phase shift k · x0 due to its location, the

contribution of the second test charge is similar to that of the first, which is at the origin

(0, 0). Such a phase shift can nevertheless lead to interference of the plasma oscillations

excited by the two test charges and thus affect the behavior of the electrostatic potential.

For convenience of comparison with the single test-charge case, in the following we shall

use the same parameters and limits as in [11] wherever suitable.

3. Weak collisions

We first consider the weak collision limit ν ≪ kvt and r ≫ v0/ν, or λm ≫ r ≫ (v0/vt)λm,

where vt is the thermal speed and λm= vt/ν is the electron mean free path. The potential

(3) then becomes

ϕ∼
∑
j=1,2

[
qj

4πε0rj
e−r1/λD+

qjλ
2
Dv0 cos θj√
2ππε0vtr3j

(
1−

√
πν∗rj

2
√
2vt

)]
, (5)

where ν∗ = (π/2−1)ν, λD is the Debye length, r1 = |x−v0t| and r2 = |x−x0−v0t| are
the distances of two test charges from the observer, and θj is the angle between rj and

v0. That is, the distance of the observer from the test charges is much larger than λD

but much less than λm, and the effect of collisions (the second term in the parenthesis)

is small.

When the observer is not too far away from the test-charge pair, the potential

is dominated by the first, or the Debye shielding, term of (5). At long distances,

however, the second term corresponding to the wakefield behind the test charges becomes

important since it is not shielded. In fact, we see that the wake potential falls off as

inverse third power of the distance from the observer. With a single test charge q1 = −e,

the wake potential is positive behind (π/2 < θ < 3π/2) it. Comparing to the single

test charge case, the angular dependence of the positive potential region in the two test

charge case is more complicated since it also involves r0 and r1.

It is convenient to introduced the normalized quantities r = r/λD, t = ωpt

v0 = v0/vt, n = nλ3
D, and ν = λDν/vt, where the original dimensional quantities are on

the right hand sides and vt is the electron thermal speed. For the numerical evaluation,

we assume v0 = 0.005 and ν = 0.01. For convenience of discussion, in the figures we

shall use a frame moving at the constant velocity v0 = v0êx of the test charges. Thus,

we can assume that the first charge is at the origin and the second charge at r0.

Fig. 1 shows the far-field (r ≫ λD) potential (a) of a single test charge, and (b) and

(c) of two test charges with different |r0| values. As expected, the potential depends

strongly on r0 as well as the angle between the direction of the test charge motion

and the observer. When the distance r0 between the two test charges is small (b), the

potential distribution is similar to that for the single test charge (a): the potential at the

front and back of the moving test charges are antisymmetric. However, with two test

charges separated at the larger distance, this symmetry is broken, as can be seen in (c).

In fact, as r0 increases, the potential in front of the test charges becomes increasingly
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Figure 1. The far-field (r > 15) potential for (a) a single negative test charge at

r = (0, 0), and a second negative test charge at (b) r = (1, 0) and (c) r = (3, 0). In

order to show the complete space, the region around (0, 0) is also included. However,

the potential in this region (r < 15) is left blank since the solutions are not valid there.

The same applies to the other figures.

Figure 2. The potential of two parallel moving charges for the separation distances

(a) r0 = 1 and (b) r0 = 5. That is, r0 is in the transverse (y) direction.

lower. That is, the plasma in the front becomes less perturbed, but the wake is more

like that of the single test charge. This indicates that unfavorable (favorable) phase

mixing of the plasma waves independently excited by the two test charges took place at

the front (back) of the pair.

It may also be of interest to consider the potential distribution of two parallel co-

moving test charges, i.e., r0 is along the y direction, perpendicular to the direction

of propagation. Fig. 2 shows that the affected region widens as |r0| becomes smaller.

Moreover, the potential becomes smaller when the observation angle is decreased. With

the charge separation distance r0 increasing, the locations of potential peaks and valleys

shift towards the r0 direction. Since the second test charge is nearer to the observer,

its influence is also somewhat larger than the first test charge.

When the second test charge (i.e., a positron) is positive, the behavior of the

potential distribution is somewhat more complicated. Fig. 3 shows several typical cases.

As expected, the far-field potential is generally of much smaller magnitude and can even

vanish locally. However, its overall profile remains qualitatively similar to that of two

negative charges. This can be expected since besides modifying the charge distribution,
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Figure 3. The potential of two co-moving charges for r0 = 1. (a) The second charge

is positive and r0 = (1, 0). (b) The second charge is positive and r0 = (0, 1). (c) Two

positive test charges and r0 = (0, 1).

the polarity of the second point charge only shifts the phases of the excited oscillations

by π (i.e., exactly antisymmetric). This behavior also resembles that of appropriately

changing the separation distance between the charges, such that the relative phases of

the plasma waves excited independently by the latter are shifted by π.

4. Strong collisions

We now consider the high collision-frequency regime, namely ν ≫ kvt ≫ k ·v0, or

rj ≫ λm ≫ v0/ν.

First we look at the limit of very strong collisions, namely νv0r ≫ v2t . One easily

obtains ϕ ∼ ∑
j=1,2 qj/4πε0rj, which we see behaves like the long-ranged Coulomb

potential of two stationary charges in vacuum. This isotropic result can be expected

since in this limit the thermal and test-charge velocities are to small to realize Debye

shielding and test-charge motion induced anisotropy. However, this regime is relatively

small and valid only when the observer is sufficiently far away.

Next, in the limit νv0r ≪ v2t , we have

ϕ ∼
∑
j=1,2

(
qj

4πε0rj
e−rj/λD − qtνv0

4πε0ω2
pr

2
j

cos θj

)
. (6)

Fig. 4 shows the far-field potential of the test charges for ν = 1 and different charge

separation distances r0. The potential falls off as the inverse square of the distance

from, and is positive in front of, the test charges. It also differs from the preceding case

in that the positive potential is now in the front. However, as both cases depend on

cos θ, their lateral potential profiles are similar. That is, the essential difference is that

in the weak collisions limit the far-field potential falls off as the inverse third power,

and in the strong collision limit as the inverse square, of the distance to the observer.

Furthermore, to an observer who is sufficiently far away, the potential of two point

test charges are qualitatively similar (but not identical) as that for a single test charge.

However, it should be cautioned that the results here may not hold if the charges are

of finite dimension [17], too fast [19], or if the background plasma response is nonlinear

[24].
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Figure 4. The potential distribution of two inline test charges in highly collisional

plasma, for (a) r0 = 1, (b) r0 = 3, and (c) r0 = 5. There is no shielding, and the decay

around the axis in the wake of the charges scales as inverse square of the distance away

from the pair. But there is exponential Debye shielding in the transverse direction.

5. Discussions

In this paper we have considered the potential of two or more co-moving test charges in

an equilibrium plasma. For simplicity, we have considered slowly moving (v ≪ vt) test

charges. It is found that, except for some details, the far-field potential is qualitatively

similar to that of a single moving test charge. It is also found that the far-field potential

of an electron-positron pair is weak but nonzero as long as their separation distance is

finite. The results here can be understood in terms of the weak disturbance (namely

the plasma waves) excited by the point charges in the plasma and spread by the plasma

waves whose phase velocities are less than the electron thermal velocity. To an observer

far away, except in the magnitude the effects of one or two or more charges cannot

be very much different unless there is significant coherent phase interference among the

disturbances from the different test charges. But unlike in one-dimensional systems, such

coherent phase interference is highly unlikely in three-dimensional systems. Moreover,

the conclusions here do not apply to the near-field (not considered here) potential

distribution, as can already be observed from our results when the observer is not

too far (but still within our approximations) from the test charges. There the potential

distribution can be rather different for different arrangements of the test charges. It

should also be pointed out that if the test charges move near the electron thermal speed,

electron concentration associated with strong Landau damping of the excited plasma

oscillations in the wakefield can take place and the behavior of its far-field potential can

become quite different.

Besides being relevant to the physics of charged-particle shielding [11, 12, 13] and

kinetic behavior of plasmas [22, 23], our results on the far-field potential of two test

charges should also be of interest in practical applications such as the wake of satellites in

space and reentry bodies in the upper ionosphere [17, 19], particle acceleration schemes

based on the wakefield of charged particle beams [27, 28, 29, 30, 31], self-organization

of dust grains in plasmas [14, 15, 16], etc. In such environments the plasma particles

involved are considerably more coherent and the non-shielding effects are much more

likely to accumulate.
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